close
1.

図書

図書
泉屋周一 [ほか] 共著
出版情報: 東京 : 数学書房, 2011.4  viii, 205p ; 21cm
シリーズ名: テキスト理系の数学 / 泉屋周一 [ほか] 編 ; 1
所蔵情報: loading…
2.

図書

東工大
目次DB

図書
東工大
目次DB
小池茂昭著
出版情報: 東京 : 数学書房, 2010.4  xi, 317p ; 21cm
シリーズ名: テキスト理系の数学 / 泉屋周一 [ほか] 編 ; 2
所蔵情報: loading…
目次情報: 続きを見る
シリーズ刊行にあたって i
まえがき iii
第Ⅰ部 微分積分への準備 1
 第1章 実数
   1.1 記号・命題 3
   1.2 実数の公理 5
   1.3 実数の部分集合 6
    1.3.1 上限・下限の性質 11
    1.3.2 集合の定数倍・和 12
   1.4 「連続性の公理」再訪 13
   1.5 問題 15
 第2章 数列・級数
   2.1 収束列 16
   2.2 数列の基本性質 20
   2.3 部分列 26
   2.4 コーシー列 29
   2.5 級数 30
   2.6 級数の収束・発散の判定法 31
    2.6.1 正項級数 33
   2.7 問題 35
 第3章 関数の連続性
   3.1 収束・極限 39
    3.1.1 ±∞での収束・±∞への発散 42
   3.2 連続性 44
    3.2.1 連続性の基本性質 47
    3.2.2 Ι上での連続性 48
    3.2.3 連続関数の例 49
   3.3 逆関数 51
    3.3.1 (狭義)増加・減少関数 54
    3.3.2 逆関数の連続性 56
   3.4 連続関数の性質 58
   3.5 一様連続関数 62
   3.6 問題 65
第II部 1変数関数の微分積分 67
 第4章 1変数関数の微分の基礎
   4.1 定義と基本性質 69
    4.1.1 導関数 74
   4.2 逆関数の微分 77
   4.3 高階の微分 79
   4.4 平均値の定理・テイラーの定理 80
   4.5 問題 86
 第5章 1変数関数の積分の基礎
   5.1 定義 88
   5.2 基本性質 96
   5.3 原始関数 100
   5.4 置換積分・部分積分 103
   5.5 不定積分・原始関数の例 104
   5.6 問題 106
 第6章 1変数関数の微分の応用(ロピタルの定理・極値)
   6.1 ロピタルの定理 110
   6.2 極値(1変数) 114
   6.3 問題 116
 第7章 1変数関数の積分の応用(不定積分・広義積分)
   7.1 様々な不定積分の求め方 118
    7.1.1 有理関数 118
    7.1.2 三角関数を含んだ関数 120
    7.1.3 無理関数 120
   7.2 広義積分 122
   7.3 問題 127
 第8章 関数列
   8.1 一様収束 128
   8.2 積分と関数列の極限の交換 130
   8.3 問題 131
第III部 多変数関数の微分積分 133
 第9章 RからR^Nへ
   9.1 R^Nの点 136
   9.2 R^Nの部分集合 138
   9.3 多変数関数の連続性 140
   9.4 行列のノルム 145
   9.5 最大値のノルム 146
   9.6 問題 146
 第10章 多変数関数の微分の基礎
   10.1 偏微分可能・全微分可能 148
   10.2 高階偏微分・高階偏導関数 153
   10.3 合成関数の偏微分 156
   10.4 テイラーの定理 159
   10.5 問題 161
 第11章 陰関数定理とその応用
   11.1 陰関数定理 164
   11.2 極値(多変数) 172
   11.3 条件付極値 175
   11.4 問題 178
 第12章 多変数関数の積分の基礎
   12.1 直方体上の積分 180
   12.2 有界集合上での積分 188
   12.3 累次積分 193
   12.4 広義積分 197
   12.5 問題 200
 第13章 多変数関数の積分の変数変換
   13.1 変数変換 202
    13.1.1 変数変換の公式(定理13.1)のN=2での証明 207
   13.2 問題 215
第IV部 付録 217
 第14章 追加事項
   14.1 1章 実数 219
    14.1.1 否定命題の作り方 219
    14.1.2 必要条件・十分条件 220
    14.1.3 実数の公理(b),(c) 221
    14.1.4 有理数の稠密性 222
    14.1.5 実数べき乗の定義 223
   14.2 2章 数列・級数 225
    14.2.1 上極限・下極限 225
    14.2.2 実数べき乗の性質 226
    14.2.3 実数の構成 228
    14.2.4 判定法の改良 234
    14.2.5 絶対収束 235
    14.2.6 乗積級数 236
   14.3 3章 関数の連続性 238
    14.3.1 左右極限 左右連続 240
    14.3.2 はさみうちの原理 241
    14.3.3 逆関数の連続性(定理3.10)の区間Ιが一般の場合の証明 242
    14.3.4 上極限・下極限と上半連続・下半連続 244
   14.4 4章 1変数関数の微分の基礎 247
    14.4.1 eの無理数性 247
    14.4.2 コーシーの剰余項 247
    14.4.3 テイラー展開 249
    14.5 5章 1変数関数の積分の基礎 250
    14.5.1 ダルブーの定理 250
    14.5.2 積分の平均値の定理 251
   14.6 6章 1変数関数の微分の応用 253
   14.7 7章 1変数関数の積分の応用 255
    14.7.1 絶対積分可能 255
    14.7.2 三角関数の解析的な定義方俵 257
   14.8 8章 関数列 258
    14.8.1 微分と関数列の極限の交換 258
    14.8.2 アスコリ・アルツェラの定理 259
   14.9 9章 RからR^Nへ 261
    14.9.1 境界・内部・外部 261
    14.9.2 連結性 263
    14.9.3 多変数関数のアスコリ・アルツェラの定理 265
   14.10 10章 多変数関数の微分の基礎 265
   14.11 12章 多変数関数の積分の基礎 269
    14.11.1 N次元球の体積 273
   14.12 13章 多変数関数の積分の変数変換 275
    14.12.1 変数変換の公式(定理13.1)のN>2での証明 275
    14.13 初等関数の性質 278
 第15章 各章の証明
   15.1 1章 実数 282
   15.2 2章 数列・級数 283
   15.3 3章 関数の連続性 290
   15.4 4章 1変数関数の微分の基礎 293
   15.5 5章 1変数関数の積分の基礎 295
   15.6 6章 1変数関数の微分の応用 296
   15.7 9章 RからR^Nへ 298
   15.8 11章 陰関数定理とその応用 300
   15.9 12章 多変数関数の積分の基礎 305
   15.10 13章 多変数関数の積分の変数変換 311
あとがき 313
索引 314
シリーズ刊行にあたって i
まえがき iii
第Ⅰ部 微分積分への準備 1
3.

図書

図書
小池茂昭著 ; 新井仁之 [ほか] 編
出版情報: 東京 : 共立出版, 2016.12  vii, 206p ; 22cm
シリーズ名: 共立講座 数学の輝き ; 8
所蔵情報: loading…
目次情報: 続きを見る
第1章 準備 : 記号・用語・表現
粘性解の導入 ほか
第2章 粘性解の定義 : 例
定義 ほか
第3章 比較原理 : 古典解と粘性解の比較原理
粘性解の比較原理 ほか
第4章 比較原理—再訪 : 関数の近似
関数の二重近似 ほか
第5章 存在と安定性 : Perronの方法
一階偏微分方程式の解の表現公式 ほか
第1章 準備 : 記号・用語・表現
粘性解の導入 ほか
第2章 粘性解の定義 : 例
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼