close
1.

図書

図書
edited by Andrei Ershov and Valery A. Nepomniaschy
出版情報: Berlin ; New York : Springer-Verlag, 1974  407 p ; 25 cm
シリーズ名: Lecture notes in computer science ; 5
所蔵情報: loading…
2.

図書

図書
IAC-CNR, Istituto per le applicazioni del calcolo "Mauro Picone" of the Consiglio nazionale delle ricerche ; edited by C. Böhm
出版情報: Berlin ; New York : Springer-Verlag, 1975  xii, 370 p. ; 25 cm
シリーズ名: Lecture notes in computer science ; 37
所蔵情報: loading…
3.

図書

図書
edited by Arto Salomaa and Magnus Steinby
出版情報: Berlin ; New York : Springer-Verlag, 1977  x, 569 p. ; 25 cm
シリーズ名: Lecture notes in computer science ; 52
所蔵情報: loading…
4.

図書

図書
edited by S. Even and O. Kariv
出版情報: Berlin : Springer-Verlag, 1981  viii, 550 p. ; 25 cm
シリーズ名: Lecture notes in computer science ; 115
所蔵情報: loading…
5.

図書

図書
edited by G. Ausiello and C. Böhm
出版情報: Berlin ; New York : Springer-Verlag, 1978  viii, 508 p., ; 25 cm
シリーズ名: Lecture notes in computer science ; 62
所蔵情報: loading…
6.

図書

図書
Timo Lepistö, Arto Salomaa (eds.)
出版情報: Berlin ; Tokyo : Springer-Verlag, c1988  xi, 741 p. ; 25 cm
シリーズ名: Lecture notes in computer science ; 317
所蔵情報: loading…
7.

図書

図書
edited by J.W. de Bakker and J. van Leeuwen
出版情報: Berlin : Springer-Verlag, 1980  viii, 671 p. ; 25 cm
シリーズ名: Lecture notes in computer science ; 85
所蔵情報: loading…
8.

図書

図書
edited by Hermann A. Maurer
出版情報: Berlin : Springer-Verlag, 1980  ix, 684 p. ; 25 cm
シリーズ名: Lecture notes in computer science ; 71
所蔵情報: loading…
目次情報: 続きを見る
Preface
Fabrication / Part I:
Introduction / Chapter 1:
What are MEMS? / 1.1:
Why MEMS? / 1.2:
Low cost, redundancy and disposability / 1.2.1:
Favorable scalings / 1.2.2:
How are MEMS made? / 1.3:
Roadmap and perspective / 1.4:
Essay: The Role of Surface to Volume Atoms as Magnetic Devices Miniaturize
The substrate and adding material to it / Chapter 2:
The silicon substrate / 2.1:
Silicon growth / 2.2.1:
It's a crystal / 2.2.2:
Miller indices / 2.2.3:
It's a semiconductor / 2.2.4:
Additive technique: Oxidation / 2.3:
Growing an oxide layer / 2.3.1:
Oxidation kinetics / 2.3.2:
Additive technique: Physical vapor deposition / 2.4:
Vacuum fundamentals / 2.4.1:
Thermal evaporation / 2.4.2:
Sputtering / 2.4.3:
Other additive techniques / 2.5:
Chemical vapor deposition / 2.5.1:
Electrodeposition / 2.5.2:
Spin casting / 2.5.3:
Wafer bonding / 2.5.4:
Essay: Silicon Ingot Manufacturing
Creating and transferring patterns-Photolithography / Chapter 3:
Keeping it clean / 3.1:
Photoresist / 3.3:
Positive resist / 3.3.1:
Negative resist / 3.3.2:
Working with resist / 3.4:
Applying photoresist / 3.4.1:
Exposure and pattern transfer / 3.4.2:
Development and post-treatment / 3.4.3:
Masks / 3.5:
Resolution / 3.6:
Resolution in contact and proximity printing / 3.6.1:
Resolution in projection printing / 3.6.2:
Sensitivity and resist profiles / 3.6.3:
Modeling of resist profiles / 3.6.4:
Photolithography resolution enhancement technology / 3.6.5:
Mask alignment / 3.6.6:
Permanent resists / 3.7:
Essay: Photolithography-Past, Present and Future
Creating structures-Micromachining / Chapter 4:
Bulk micromachining processes / 4.1:
Wet chemical etching / 4.2.1:
Dry etching / 4.2.2:
Surface micromachining / 4.3:
Surface micromachining processes / 4.3.1:
Problems with surface micromachining / 4.3.2:
Lift-off / 4.3.3:
Process integration / 4.4:
A surface micromachining example / 4.4.1:
Designing a good MEMS process flow / 4.4.2:
Last thoughts / 4.4.3:
Essay: Introduction to MEMS Packaging
Solid mechanics / Chapter 5:
Fundamentals of solid mechanics / 5.1:
Stress / 5.2.1:
Strain / 5.2.2:
Elasticity / 5.2.3:
Special cases / 5.2.4:
Non-isotropic materials / 5.2.5:
Thermal strain / 5.2.6:
Properties of thin films / 5.3:
Adhesion / 5.3.1:
Stress in thin films / 5.3.2:
Peel forces / 5.3.3:
Applications / Part II:
Thinking about modeling / Chapter 6:
What is modeling? / 6.1:
Units / 6.2:
The input-output concept / 6.3:
Physical variables and notation / 6.4:
Preface to the modeling chapters / 6.5:
MEMS transducers-An overview of how they work / Chapter 7:
What is a transducer? / 7.1:
Distinguishing between sensors and actuators / 7.2:
Response characteristics of transducers / 7.3:
Static response characteristics / 7.3.1:
Dynamic performance characteristics / 7.3.2:
MEMS sensors: principles of operation / 7.4:
Resistive sensing / 7.4.1:
Capacitive sensing / 7.4.2:
Piezoelectric sensing / 7.4.3:
Resonant sensing / 7.4.4:
Thermoelectric sensing / 7.4.5:
Magnetic sensing / 7.4.6:
MEMS actuators: principles of operation / 7.5:
Capacitive actuation / 7.5.1:
Piezoelectric actuation / 7.5.2:
Thermo-mechanical actuation / 7.5.3:
Thermo-electric cooling / 7.5.4:
Magnetic actuation / 7.5.5:
Signal conditioning / 7.6:
A quick look at two applications / 7.7:
RF applications / 7.7.1:
Optical applications / 7.7.2:
Piezoresistive transducers / Chapter 8:
Modeling piezoresistive transducers / 8.1:
Bridge analysis / 8.2.1:
Relating electrical resistance to mechanical strain / 8.2.2:
Device case study: Piezoresistive pressure sensor / 8.3:
Capacitive transducers / Chapter 9:
Capacitor fundamentals / 9.1:
Fixed-capacitance capacitor / 9.2.1:
Variable-capacitance capacitor / 9.2.2:
An overview of capacitive sensors and actuators / 9.2.3:
Modeling a capacitive sensor / 9.3:
Capacitive half-bridge / 9.3.1:
Conditioning the signal from the half-bridge / 9.3.2:
Mechanical subsystem / 9.3.3:
Device case study: Capacitive accelerometer / 9.4:
Piezoelectric transducers / Chapter 10:
Modeling piezoelectric materials / 10.1:
Mechanical modeling of beams and plates / 10.3:
Distributed parameter modeling / 10.3.1:
Statics / 10.3.2:
Bending in beams / 10.3.3:
Bending in plates / 10.3.4:
Case study: Cantilever piezoelectric actuator / 10.4:
Thermal transducers / Chapter 11:
Basic heat transfer / 11.1:
Conduction / 11.2.1:
Convection / 11.2.2:
Radiation / 11.2.3:
Case study: Hot-arm actuator / 11.3:
Lumped element model / 11.3.1:
Distributed parameter model / 11.3.2:
FEA model / 11.3.3:
Essay: Effect of Scale on Thermal Properties
Introduction to microfluidics / Chapter 12:
Basics of fluid mechanics / 12.1:
Viscosity and flow regimes / 12.2.1:
Entrance lengths / 12.2.2:
Basic equations of fluid mechanics / 12.3:
Conservation of mass / 12.3.1:
Conservation of linear momentum / 12.3.2:
Conservation equations at a point: Continuity and Navier-Stokes equations / 12.3.3:
Some solutions to the Navier-Stokes equations / 12.4:
Couette flow / 12.4.1:
Poiseuille flow / 12.4.2:
Electro-osmotic flow / 12.5:
Electrostatics / 12.5.1:
Ionic double layers / 12.5.2:
Navier-Stokes with a constant electric field / 12.5.3:
Electrophoretic separation / 12.6:
Essay: Detection Schemes Employed in Microfluidic Devices for Chemical Analysis
Microfabrication laboratories / Part III:
Hot-arm actuator as a hands-on case study / Chapter 13:
Overview of fabrication of hot-arm actuators / 13.2:
Cleanroom safety and etiquette / 13.3:
Experiments / 13.4:
Wet oxidation of a silicon wafer / Experiment 1:
Photolithography of sacrificial layer / Experiment 2:
Depositing metal contacts with evaporation / Experiment 3:
Wet chemical etching of aluminum / Experiment 4:
Plasma ash release / Experiment 5:
Characterization of hot-arm actuators / Experiment 6:
Notation / Appendix A:
Periodic table of the elements / Appendix B:
The complimentary error function / Appendix C:
Color chart for thermally grown silicon dioxide / Appendix D:
Glossary
Subject Index
Preface
Fabrication / Part I:
Introduction / Chapter 1:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼