close
1.

図書

東工大
目次DB

図書
東工大
目次DB
金井久雄
出版情報: [東京] : [出版社不明], 2003.3 , (東京 : NECメディアプロダクツ)  1冊 ; 27cm
所蔵情報: loading…
目次情報: 続きを見る
はじめに
第1章 雪国に生まれて 1
第2章 日本電気株式会社(NEC)入社とワイヤスプリングリレー開発 2
第3章 米国イリノイ大学留学-ディジタルエレクトロニクス工学を学ぶために 3
第4章 Digital Electronics視察の旅-主として電子交換とコンピュータの研究状況について 4
第5章 ディジタルエレクトロニクスの道へ-半導体回路の研究と一年間の闘病 5
第6章 電力理論の研究 6
第7章 電子交換用電子回路と集積回路(IC)の実用化 7
第8章 低エネルギディジタルLSI技術の開発とDL-2N装置 8
第9章 情報処理システムのLSI化 9
第10章 LSI技術による大型コンピュータの開発 10
第11章 超LSI(VLSI)技術の開発とLSI化テクノロジのレベル設定 11
第12章 小林会長の"C&C”の提唱とNECの道 12
第13章 コンピュータ技術本部長の任を受けて 13
第14章 システムLSI推進開発本部の誕生-システムLSI:システム・オン・チップの命名 14
第15章 支配人および取締役に就任 15
第16章 システムVLSIの推進 16
第17章 情報処理事業の推進 17
第18章 NEC Technologies,Inc.,の事業再建 18
第19章 日本航空電子工業株式会社社長に就任 19
第20章 事業経営の方針 20
第21章 事業体制の改革 21
第22章 事業力の強化 22
第23章 I/O経営に至る道 23
第24章 I/O経営とその実践 24
おわりに
はじめに
第1章 雪国に生まれて 1
第2章 日本電気株式会社(NEC)入社とワイヤスプリングリレー開発 2
2.

図書

図書
Jean-Pierre Colinge, editor
出版情報: New York : Springer, c2008  xiii, 339 p. ; 24 cm
シリーズ名: Series on Integrated Circuits and Systems
所蔵情報: loading…
目次情報: 続きを見る
Preface
Table of Content
Contributors
The SOI MOSFET: from Single Gate to Multigate / 1:
MOSFET scaling and Moore's law / 1.1:
Short-Channel Effects / 1.2:
Gate Geometry and Electrostatic Integrity / 1.3:
A Brief History of Multiple-Gate MOSFETs / 1.4:
Single-gate SOI MOSFETs / 1.4.1:
Double-gate SOI MOSFETs / 1.4.2:
Triple-gate SOI MOSFETs / 1.4.3:
Surrounding-gate (quadruple-gate) SOI MOSFETs / 1.4.4:
Other multigate MOSFET structures / 1.4.5:
Multigate MOSFET memory devices / 1.4.6:
Multigate MOSFET Physics / 1.5:
Classical physics / 1.5.1:
Natural length and short-channel effects / 1.5.1.1:
Current drive / 1.5.1.2:
Corner effect / 1.5.1.3:
Quantum effects / 1.5.2:
Volume inversion / 1.5.2.1:
Mobility effects / 1.5.2.2:
Threshold voltage / 1.5.2.3:
Inter-subband scattering / 1.5.2.4:
References
Multigate MOSFET Technology / 2:
Introduction / 2.1:
Active Area: Fins / 2.2:
Fin Width / 2.2.1:
Fin Height and Fin Pitch / 2.2.2:
Fin Surface Crystal Orientation / 2.2.3:
Fin Surface Preparation / 2.2.4:
Fins on Bulk Silicon / 2.2.5:
Nano-wires and Self-Assembled Wires / 2.2.6:
Gate Stack / 2.3:
Gate Patterning / 2.3.1:
Threshold Voltage and Gate Workfunction Requirements / 2.3.2:
Polysilicon Gate / 2.3.2.1:
Metal Gate / 2.3.2.2:
Tunable Workfunction Metal Gate / 2.3.2.3:
Gate EWF and Gate Induced Drain Leakage (GIDL) / 2.3.3:
Independently Controlled Gates / 2.3.4:
Source/Drain Resistance and Capacitance / 2.4:
Doping the Thin Fins / 2.4.1:
Junction Depth / 2.4.2:
Parasitic Resistance/Capacitance and Raised Source and Drain Structure / 2.4.3:
Mobility and Strain Engineering / 2.5:
Wafer Bending Experiment / 2.5.1:
Nitride Stress Liners / 2.5.3:
Embedded SiGe and SiC Source and Drain / 2.5.4:
Local Strain from Gate Electrode / 2.5.5:
Substrate Strain: Strained Silicon on Insulator / 2.5.6:
Contacts to the Fins / 2.6:
Dumbbell source and drain contact / 2.6.1:
Saddle contact / 2.6.2:
Contact to merged fins / 2.6.3:
Acknowledgments
BSIM-CMG: A Compact Model for Multi-Gate Transistors / 3:
Framework for Multigate FET Modeling / 3.1:
Multigate Models: BSIM-CMG and BSIM-IMG / 3.3:
The BSIM-CMG Model / 3.3.1:
The BSIM-IMG Model / 3.3.2:
BSIM-CMG / 3.4:
Core Model / 3.4.1:
Surface Potential Model / 3.4.1.1:
I-V Model / 3.4.1.2:
C-V Model / 3.4.1.3:
Modeling Physical Effects of Real Devices / 3.4.2:
Quantum Mechanical Effects (QME) / 3.4.2.1:
Short-channel Effects (SCE) / 3.4.2.2:
Experimental Verification / 3.4.3:
Surface Potential of independent DG-FET / 3.5:
BSIM-IMG features / 3.5.2:
Summary / 3.6:
Physics of the Multigate MOS System / 4:
Device electrostatics / 4.1:
Double gate MOS system / 4.2:
Modeling assumptions / 4.2.1:
Gate voltage effect / 4.2.2:
Semiconductor thickness effect / 4.2.3:
Asymmetry effects / 4.2.4:
Oxide thickness effect / 4.2.5:
Electron tunnel current / 4.2.6:
Two-dimensional confinement / 4.3:
Mobility in Multigate MOSFETs / 5:
Double-Gate MOSFETs and FinFETs / 5.1:
Phonon-limited mobility / 5.2.1:
Confinement of acoustic phonons / 5.2.2:
Interface roughness scattering / 5.2.3:
Coulomb scattering / 5.2.4:
Temperature Dependence of Mobility / 5.2.5:
Symmetrical and Asymmetrical Operation of DGSOI FETs / 5.2.6:
Crystallographic orientation / 5.2.7:
High-k dielectrics / 5.2.8:
Strained DGSOI devices / 5.2.9:
Silicon multiple-gate nanowires / 5.2.10:
Electrostatic description of Si nanowires / 5.3.1:
Electron transport in Si nanowires / 5.3.3:
Surface roughness / 5.3.4:
Experimental results and conclusions / 5.3.5:
Radiation Effects in Advanced Single- and Multi-Gate SOI MOSFETs / 6:
A brief history of radiation effects in SOI / 6.1:
Total Ionizing Dose Effects / 6.2:
A brief overview of Total Ionizing Dose effects / 6.2.1:
Advanced Single-Gate FDSOI devices / 6.2.2:
Description of Advanced FDSOI Devices / 6.2.2.1:
Front-gate threshold voltage shift / 6.2.2.2:
Single-transistor latch / 6.2.2.3:
Advanced Multi-Gate devices / 6.2.3:
Devices and process description / 6.2.3.1:
Single-Event Effects / 6.2.3.2:
Background / 6.3.1:
Effect of ion track diameter in nanoscale devices / 6.3.2:
Transient measurements on single-gate and FinFET SOI transistors / 6.3.3:
Scaling effects / 6.3.4:
Multi-Gate MOSFET Circuit Design / 7:
Digital Circuit Design / 7.1:
Impact of device performance on digital circuit design / 7.2.1:
Large-scale digital circuits / 7.2.2:
Leakage-performance trade off and energy dissipation / 7.2.3:
Multi-V[subscript T] devices and mixed-V[subscript T] circuits / 7.2.4:
High-temperature circuit operation / 7.2.5:
SRAM design / 7.2.6:
Analog Circuit Design / 7.3:
Device figures of merit and technology related design issues / 7.3.1:
Transconductance / 7.3.1.1:
Intrinsic transistor gain / 7.3.1.2:
Matching behavior / 7.3.1.3:
Flicker noise / 7.3.1.4:
Transit and maximum oscillation frequency / 7.3.1.5:
Self-heating / 7.3.1.6:
Charge trapping in high-k dielectrics / 7.3.1.7:
Design of analog building blocks / 7.3.2:
V-[subscript T]-based current reference circuit / 7.3.2.1:
Bandgap voltage reference / 7.3.2.2:
Operational amplifier / 7.3.2.3:
Comparator / 7.3.2.4:
Mixed-signal aspects / 7.3.3:
Current steering DAC / 7.3.3.1:
Successive approximation ADC / 7.3.3.2:
RF circuit design / 7.3.4:
SoC Design and Technology Aspects / 7.4:
Index
Preface
Table of Content
Contributors
3.

図書

図書
by Franco Maloberti
出版情報: Dordrecht : Springer, c2007  xv, 440 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Dedication
Preface
Background Elements / 1:
The Ideal Data Converter / 1.1:
Sampling / 1.2:
Undersampling / 1.2.1:
Sampling-time Jitter / 1.2.2:
Amplitude Quantization / 1.3:
Quantization Noise / 1.3.1:
Properties of the Quantization Noise / 1.3.2:
kT/C Noise / 1.4:
Discrete and Fast Fourier Transforms / 1.5:
Windowing / 1.5.1:
Coding Schemes / 1.6:
The D/A Converter / 1.7:
Ideal Reconstruction / 1.7.1:
Real Reconstruction / 1.7.2:
The Z-Transform / 1.8:
References
Data Converters Specifications / 2:
Type of Converter / 2.1:
Conditions of Operation / 2.2:
Converter Specifications / 2.3:
General Features / 2.3.1:
Static Specifications / 2.4:
Dynamic Specifications / 2.5:
Digital and Switching Specifications / 2.6:
Nyquist-Rate D/A Converters / 3:
Introduction / 3.1:
DAC Applications / 3.1.1:
Voltage and Current References / 3.1.2:
Types of Converters / 3.2:
Resistor based Architectures / 3.3:
Resistive Divider / 3.3.1:
X-Y Selection / 3.3.2:
Settling of the Output Voltage / 3.3.3:
Segmented Architectures / 3.3.4:
Effect of the Mismatch / 3.3.5:
Trimming and Calibration / 3.3.6:
Digital Potentiometer / 3.3.7:
R-2R Resistor Ladder DAC / 3.3.8:
Deglitching / 3.3.9:
Capacitor Based Architectures / 3.4:
Capacitive Divider DAC / 3.4.1:
Capacitive MDAC / 3.4.2:
"Flip Around" MDAC / 3.4.3:
Hybrid Capacitive-Resistive DACs / 3.4.4:
Current Source based Architectures / 3.5:
Basic Operation / 3.5.1:
Unity Current Generator / 3.5.2:
Random Mismatch with Unary Selection / 3.5.3:
Current Sources Selection / 3.5.4:
Current Switching and Segmentation / 3.5.5:
Switching of Current Sources / 3.5.6:
Other Architectures / 3.6:
Nyquist Rate A/D Converters / 4:
Timing Accuracy / 4.1:
Metastability error / 4.2.1:
Full-Flash Converters / 4.3:
Reference Voltages / 4.3.1:
Offset of Comparators / 4.3.2:
Offset Auto-zeroing / 4.3.3:
Practical Limits / 4.3.4:
Sub-Ranging and Two-Step Converters / 4.4:
Accuracy Requirements / 4.4.1:
Two-step Converter as a Non-linear Process / 4.4.2:
Folding and Interpolation / 4.5:
Double Folding / 4.5.1:
Interpolation / 4.5.2:
Use of Interpolation in Flash Converters / 4.5.3:
Use of Interpolation in Folding Architectures / 4.5.4:
Interpolation for Improving Linearity / 4.5.5:
Time-Interleaved Converters / 4.6:
Accuracy requirements / 4.6.1:
Successive Approximation Converter / 4.7:
Errors and Error Correction / 4.7.1:
Charge Redistribution / 4.7.2:
Pipeline Converters / 4.8:
Digital Correction / 4.8.1:
Dynamic Performances / 4.8.3:
Sampled-data Residue Generator / 4.8.4:
Cyclic (or Algorithmic) Converter / 4.9:
Integrating Converter / 4.9.2:
Voltage-to-Frequency Converter / 4.9.3:
Circuits for Data Converters / 5:
Sample-and-Hold / 5.1:
Diode Bridge S&H / 5.2:
Diode Bridge Imperfections / 5.2.1:
Improved Diode Bridge / 5.2.2:
Switched Emitter Follower / 5.3:
Circuit Implementation / 5.3.1:
Complementary Bipolar S&H / 5.3.2:
Features of S&Hs with BJT / 5.4:
CMOS Sample-and-Hold / 5.5:
Clock Feed-through / 5.5.1:
Clock Feed-through Compensation / 5.5.2:
Two-stages OTA as T&H / 5.5.3:
Use of the Virtual Ground in CMOS S&H / 5.5.4:
Noise Analysis / 5.5.5:
CMOS Switch with Low Voltage Supply / 5.6:
Switch Bootstrapping / 5.6.1:
Folding Amplifiers / 5.7:
Current-Folding / 5.7.1:
Voltage Folding / 5.7.2:
Voltage-to-Current Converter / 5.8:
Clock Generation / 5.9:
Oversampling and Low Order [Sigma Delta] Modulators / 6:
Delta and Sigma-Delta Modulation / 6.1:
Noise Shaping / 6.2:
First Order Modulator / 6.3:
Intuitive Views / 6.3.1:
Use of 1-bit Quantization / 6.3.2:
Second Order Modulator / 6.4:
Circuit Design Issues / 6.5:
Offset / 6.5.1:
Finite Op-Amp Gain / 6.5.2:
Finite Op-Amp Bandwidth / 6.5.3:
Finite Op-Amp Slew-Rate / 6.5.4:
ADC Non-ideal Operation / 6.5.5:
DAC Non-ideal Operation / 6.5.6:
Architectural Design Issues / 6.6:
Integrator Dynamic Range / 6.6.1:
Dynamic Ranges Optimization / 6.6.2:
Sampled-data Circuit Implementation / 6.6.3:
Quantization Error and Dithering / 6.6.4:
Single-bit and Multi-bit / 6.6.6:
High-Order, CT [Sigma Delta] Converters and [Sigma Delta] DAC / 7:
SNR Enhancement / 7.1:
High Order Noise Shaping / 7.2:
Single Stage Architectures / 7.2.1:
Stability Analysis / 7.2.2:
Weighted Feedback Summation / 7.2.3:
Modulator with Local Feedback / 7.2.4:
Chain of Integrators with Distributed Feedback / 7.2.5:
Cascaded [Sigma Delta] Modulator / 7.2.6:
Dynamic range for MASH / 7.2.7:
Continuous-time [Sigma Delta] Modulators / 7.3:
S&H Limitations / 7.3.1:
CT Implementations / 7.3.2:
Design of CT from Sampled-Data Equivalent / 7.3.3:
Band-Pass [Sigma Delta] Modulator / 7.4:
Interleaved N-Path Architecture / 7.4.1:
Synthesis of the NTF / 7.4.2:
Oversampling DAC / 7.5:
1-bit DAC / 7.5.1:
Double Return-to-zero DAC / 7.5.2:
Digital Enhancement Techniques / 8:
Error Measurement / 8.1:
Trimming of Elements / 8.3:
Foreground Calibration / 8.4:
Background Calibration / 8.5:
Gain and Offset in Interleaved Converters / 8.5.1:
Offset Calibration without Redundancy / 8.5.2:
Dynamic Matching / 8.6:
Butterfly Randomization / 8.6.1:
Individual Level Averaging / 8.6.2:
Data Weighted Averaging / 8.6.3:
Decimation and Interpolation / 8.7:
Decimation / 8.7.1:
Testing of D/A and A/D Converters / 8.7.2:
Test Board / 9.1:
Quality and Reliability Test / 9.3:
Data Processing / 9.4:
Best-fit-line / 9.4.1:
Sine Wave Fitting / 9.4.2:
Histogram Method / 9.4.3:
Static DAC Testing / 9.5:
Transfer Curve Test / 9.5.1:
Superposition of Errors / 9.5.2:
Non-linearity Errors / 9.5.3:
Dynamic DAC Testing / 9.6:
Spectral Features / 9.6.1:
Conversion Time / 9.6.2:
Glitch Energy / 9.6.3:
Static ADC Testing / 9.7:
Code Edge Measurement / 9.7.1:
Dynamic ADC Testing / 9.8:
Time Domain Parameters / 9.8.1:
Improving the Spectral Purity of Sine Waves / 9.8.2:
Aperture Uncertainty Measure / 9.8.3:
Settling-time Measure / 9.8.4:
Use of FFT for Testing / 9.8.5:
Index
Dedication
Preface
Background Elements / 1:
4.

電子ブック

EB
Jean-Pierre Colinge, editor
出版情報: [New York] : Springer, [20--]  1 online resource (xiii, 339 p.)
シリーズ名: Series on Integrated Circuits and Systems
所蔵情報: loading…
目次情報: 続きを見る
Preface
Table of Content
Contributors
The SOI MOSFET: from Single Gate to Multigate / 1:
MOSFET scaling and Moore's law / 1.1:
Short-Channel Effects / 1.2:
Gate Geometry and Electrostatic Integrity / 1.3:
A Brief History of Multiple-Gate MOSFETs / 1.4:
Single-gate SOI MOSFETs / 1.4.1:
Double-gate SOI MOSFETs / 1.4.2:
Triple-gate SOI MOSFETs / 1.4.3:
Surrounding-gate (quadruple-gate) SOI MOSFETs / 1.4.4:
Other multigate MOSFET structures / 1.4.5:
Multigate MOSFET memory devices / 1.4.6:
Multigate MOSFET Physics / 1.5:
Classical physics / 1.5.1:
Natural length and short-channel effects / 1.5.1.1:
Current drive / 1.5.1.2:
Corner effect / 1.5.1.3:
Quantum effects / 1.5.2:
Volume inversion / 1.5.2.1:
Mobility effects / 1.5.2.2:
Threshold voltage / 1.5.2.3:
Inter-subband scattering / 1.5.2.4:
References
Multigate MOSFET Technology / 2:
Introduction / 2.1:
Active Area: Fins / 2.2:
Fin Width / 2.2.1:
Fin Height and Fin Pitch / 2.2.2:
Fin Surface Crystal Orientation / 2.2.3:
Fin Surface Preparation / 2.2.4:
Fins on Bulk Silicon / 2.2.5:
Nano-wires and Self-Assembled Wires / 2.2.6:
Gate Stack / 2.3:
Gate Patterning / 2.3.1:
Threshold Voltage and Gate Workfunction Requirements / 2.3.2:
Polysilicon Gate / 2.3.2.1:
Metal Gate / 2.3.2.2:
Tunable Workfunction Metal Gate / 2.3.2.3:
Gate EWF and Gate Induced Drain Leakage (GIDL) / 2.3.3:
Independently Controlled Gates / 2.3.4:
Source/Drain Resistance and Capacitance / 2.4:
Doping the Thin Fins / 2.4.1:
Junction Depth / 2.4.2:
Parasitic Resistance/Capacitance and Raised Source and Drain Structure / 2.4.3:
Mobility and Strain Engineering / 2.5:
Wafer Bending Experiment / 2.5.1:
Nitride Stress Liners / 2.5.3:
Embedded SiGe and SiC Source and Drain / 2.5.4:
Local Strain from Gate Electrode / 2.5.5:
Substrate Strain: Strained Silicon on Insulator / 2.5.6:
Contacts to the Fins / 2.6:
Dumbbell source and drain contact / 2.6.1:
Saddle contact / 2.6.2:
Contact to merged fins / 2.6.3:
Acknowledgments
BSIM-CMG: A Compact Model for Multi-Gate Transistors / 3:
Framework for Multigate FET Modeling / 3.1:
Multigate Models: BSIM-CMG and BSIM-IMG / 3.3:
The BSIM-CMG Model / 3.3.1:
The BSIM-IMG Model / 3.3.2:
BSIM-CMG / 3.4:
Core Model / 3.4.1:
Surface Potential Model / 3.4.1.1:
I-V Model / 3.4.1.2:
C-V Model / 3.4.1.3:
Modeling Physical Effects of Real Devices / 3.4.2:
Quantum Mechanical Effects (QME) / 3.4.2.1:
Short-channel Effects (SCE) / 3.4.2.2:
Experimental Verification / 3.4.3:
Surface Potential of independent DG-FET / 3.5:
BSIM-IMG features / 3.5.2:
Summary / 3.6:
Physics of the Multigate MOS System / 4:
Device electrostatics / 4.1:
Double gate MOS system / 4.2:
Modeling assumptions / 4.2.1:
Gate voltage effect / 4.2.2:
Semiconductor thickness effect / 4.2.3:
Asymmetry effects / 4.2.4:
Oxide thickness effect / 4.2.5:
Electron tunnel current / 4.2.6:
Two-dimensional confinement / 4.3:
Mobility in Multigate MOSFETs / 5:
Double-Gate MOSFETs and FinFETs / 5.1:
Phonon-limited mobility / 5.2.1:
Confinement of acoustic phonons / 5.2.2:
Interface roughness scattering / 5.2.3:
Coulomb scattering / 5.2.4:
Temperature Dependence of Mobility / 5.2.5:
Symmetrical and Asymmetrical Operation of DGSOI FETs / 5.2.6:
Crystallographic orientation / 5.2.7:
High-k dielectrics / 5.2.8:
Strained DGSOI devices / 5.2.9:
Silicon multiple-gate nanowires / 5.2.10:
Electrostatic description of Si nanowires / 5.3.1:
Electron transport in Si nanowires / 5.3.3:
Surface roughness / 5.3.4:
Experimental results and conclusions / 5.3.5:
Radiation Effects in Advanced Single- and Multi-Gate SOI MOSFETs / 6:
A brief history of radiation effects in SOI / 6.1:
Total Ionizing Dose Effects / 6.2:
A brief overview of Total Ionizing Dose effects / 6.2.1:
Advanced Single-Gate FDSOI devices / 6.2.2:
Description of Advanced FDSOI Devices / 6.2.2.1:
Front-gate threshold voltage shift / 6.2.2.2:
Single-transistor latch / 6.2.2.3:
Advanced Multi-Gate devices / 6.2.3:
Devices and process description / 6.2.3.1:
Single-Event Effects / 6.2.3.2:
Background / 6.3.1:
Effect of ion track diameter in nanoscale devices / 6.3.2:
Transient measurements on single-gate and FinFET SOI transistors / 6.3.3:
Scaling effects / 6.3.4:
Multi-Gate MOSFET Circuit Design / 7:
Digital Circuit Design / 7.1:
Impact of device performance on digital circuit design / 7.2.1:
Large-scale digital circuits / 7.2.2:
Leakage-performance trade off and energy dissipation / 7.2.3:
Multi-V[subscript T] devices and mixed-V[subscript T] circuits / 7.2.4:
High-temperature circuit operation / 7.2.5:
SRAM design / 7.2.6:
Analog Circuit Design / 7.3:
Device figures of merit and technology related design issues / 7.3.1:
Transconductance / 7.3.1.1:
Intrinsic transistor gain / 7.3.1.2:
Matching behavior / 7.3.1.3:
Flicker noise / 7.3.1.4:
Transit and maximum oscillation frequency / 7.3.1.5:
Self-heating / 7.3.1.6:
Charge trapping in high-k dielectrics / 7.3.1.7:
Design of analog building blocks / 7.3.2:
V-[subscript T]-based current reference circuit / 7.3.2.1:
Bandgap voltage reference / 7.3.2.2:
Operational amplifier / 7.3.2.3:
Comparator / 7.3.2.4:
Mixed-signal aspects / 7.3.3:
Current steering DAC / 7.3.3.1:
Successive approximation ADC / 7.3.3.2:
RF circuit design / 7.3.4:
SoC Design and Technology Aspects / 7.4:
Index
Preface
Table of Content
Contributors
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼