close
1.

図書

図書
Soheil Mohammadi
出版情報: Chichester, West Sussex : John Wiley & Sons, 2012  xxvii, 371 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Nomenclature
Introduction / 1:
Composite Structures / 1.1:
Failures of Composites / 1.2:
Matrix Cracking / 1.2.1:
Delamination / 1.2.2:
Fibre/Matrix Debonding / 1.2.3:
Fibre Breakage / 1.2.4:
Macro Models of Cracking in Composites / 1.2.5:
Crack Analysis / 1.3:
Local and Non-Local Formulations / 1.3.1:
Theoretical Methods for Failure Analysis / 1.3.2:
Analytical Solutions for Composites / 1.4:
Continuum Models / 1.4.1:
Fracture Mechanics of Composites / 1.4.2:
Numerical Techniques / 1.5:
Boundary Element Method / 1.5.1:
Finite Element Method / 1.5.2:
Adaptive Finite/Discrete Element Method / 1.5.3:
Meshless Methods / 1.5.4:
Extended Finite Element Method / 1.5.5:
Extended Isogeometric Analysis / 1.5.6:
Multiscale Analysis / 1.5.7:
Scope of the Book / 1.6:
Fracture Mechanics, A Review / 2:
Basics of Elasticity / 2.1:
Stress-Strain Relations / 2.2.1:
Airy Stress Function / 2.2.2:
Complex Stress Functions / 2.2.3:
Basics of LEFM / 2.3:
Fracture Mechanics / 2.3.1:
Infinite Tensile Plate with a Circular Hole / 2.3.2:
Infinite Tensile Plate with an Elliptical Hole / 2.3.3:
Westergaard Analysis of a Line Crack / 2.3.4:
Williams Solution of a Wedge Corner / 2.3.5:
Stress Intensity Factor, K / 2.4:
Definition of the Stress Intensity Factor / 2.4.1:
Examples of Stress Intensity Factors for LEFM / 2.4.2:
Griffith Energy Theories / 2.4.3:
Mixed Mode Crack Propagation / 2.4.4:
Classical Solution Procedures for K and G / 2.5:
Displacement Extrapolation/Correlation Method / 2.5.1:
Mode I Energy Release Rate / 2.5.2:
Mode I Stiffness Derivative/Virtual Crack Model / 2.5.3:
Two Virtual Crack Extensions for Mixed Mode Cases / 2.5.4:
Single Virtual Crack Extension Based on Displacement Decomposition / 2.5.5:
Quarter Point Singular Elements / 2.6:
J Integral / 2.7:
Generalization of J / 2.7.1:
Effect of Crack Surface Traction / 2.7.2:
Effect of Body Force / 2.7.3:
Equivalent Domain Integral (EDI) Method / 2.7.4:
Interaction Integral Method / 2.7.5:
Elastoplastic Fracture Mechanics (EPFM) / 2.8:
Plastic Zone / 2.8.1:
Crack-Tip Opening Displacements (CTOD) / 2.8.2:
J Integral for EPFM / 2.8.3:
Historic Development of XFEM / 3:
A Review of XFEM Development / 3.2.1:
A Review of XFEM Composite Analysis / 3.2.2:
Enriched Approximations / 3.3:
Partition of Unity / 3.3.1:
Intrinsic and Extrinsic Enrichments / 3.3.2:
Partition of Unity Finite Element Method / 3.3.3:
MLS Enrichment / 3.3.4:
Generalized Finite Element Method / 3.3.5:
Generalized PU Enrichment / 3.3.6:
XFEM Formulation / 3.4:
Basic XFEM Approximation / 3.4.1:
Signed Distance Function / 3.4.2:
Modelling the Crack / 3.4.3:
Governing Equation / 3.4.4:
XFEM Discretization / 3.4.5:
Evaluation of Derivatives of Enrichment Functions / 3.4.6:
Selection of Nodes for Discontinuity Enrichment / 3.4.7:
Numerical Integration / 3.4.8:
XFEM Strong Discontinuity Enrichments / 3.5:
A Modified FE Shape Function / 3.5.1:
The Heaviside Function / 3.5.2:
The Sign Function / 3.5.3:
Strong Tangential Discontinuity / 3.5.4:
Crack Intersection / 3.5.5:
XFEM Weak Discontinuity Enrichments / 3.6:
XFEM Crack-Tip Enrichments / 3.7:
Isotropic Enrichment / 3.7.1:
Orthotropic Enrichment Functions / 3.7.2:
Bimaterial Enrichments / 3.7.3:
Orthotropic Bimaterial Enrichments / 3.7.4:
Dynamic Enrichment / 3.7.5:
Orthotropic Dynamic Enrichments for Moving Cracks / 3.7.6:
Bending Plates / 3.7.7:
Crack-Tip Enrichments in Shells / 3.7.8:
Electro-Mechanical Enrichment / 3.7.9:
Dislocation Enrichment / 3.7.10:
Hydraulic Fracture Enrichment / 3.7.11:
Plastic Enrichment / 3.7.12:
Viscoelastic Enrichment / 3.7.13:
Contact Corner Enrichment / 3.7.14:
Modification for Large Deformation Problems / 3.7.15:
Automatic Enrichment / 3.7.16:
Transition from Standard to Enriched Approximation / 3.8:
Linear Blending / 3.8.1:
Hierarchical Transition Domain / 3.8.2:
Tracking Moving Boundaries / 3.9:
Level Set Method / 3.9.1:
Alternative Methods / 3.9.2:
Numerical Simulations / 3.10:
A Central Crack in an Infinite Tensile Plate / 3.10.1:
An Edge Crack in a Finite Plate / 3.10.2:
Tensile Plate with a Central Inclined Crack / 3.10.3:
A Bending Plate in Fracture Mode III / 3.10.4:
Crack Propagation in a Shell / 3.10.5:
Shear Band Simulation / 3.10.6:
Fault Simulation / 3.10.7:
Sliding Contact Stress Singularity by PUFEM / 3.10.8:
Hydraulic Fracture / 3.10.9:
Dislocation Dynamics / 3.10.10:
Static Fracture Analysis of Composites / 4:
Anisotropic Elasticity / 4.1:
Elasticity Solution / 4.2.1:
Anisotropic Stress Functions / 4.2.2:
Analytical Solutions for Near Crack Tip / 4.3:
The General Solution / 4.3.1:
Special Solutions for Different Types of Composites / 4.3.2:
Orthotropic Mixed Mode Fracture / 4.4:
Energy Release Rate for Anisotropic Materials / 4.4.1:
Anisotropic Singular Elements / 4.4.2:
SIF Calculation by Interaction Integral / 4.4.3:
Orthotropic Crack Propagation Criteria / 4.4.4:
Anisotropic XFEM / 4.5:
Plate with a Crack Parallel to the Material Axis of Orthotropy / 4.5.1:
Edge Crack with Several Orientations of the Axes of Orthotropy / 4.6.2:
Inclined Edge Notched Tensile Specimen / 4.6.3:
Central Slanted Crack / 4.6.4:
An Inclined Centre Crack in a Disk Subjected to Point Loads / 4.6.5:
Crack Propagation in an Orthotropic Beam / 4.6.6:
Dynamic Fracture Analysis of Composites / 5:
Dynamic Fracture Mechanics / 5.1:
Dynamic Fracture Mechanics of Composites / 5.1.2:
Dynamic Fracture by XFEM / 5.1.3:
Analytical Solutions for Near Crack Tips in Dynamic States / 5.2:
Analytical Solution for a Propagating Crack in Isotropic Material / 5.2.1:
Asymptotic Solution for a Stationary Crack in Orthotropic Media / 5.2.2:
Analytical Solution for Near Crack Tip of a Propagating Crack in Orthotropic Material / 5.2.3:
Dynamic Stress Intensity Factors / 5.3:
Stationary and Moving Crack Dynamic Stress Intensity Factors / 5.3.1:
Dynamic Fracture Criteria / 5.3.2:
J Integral for Dynamic Problems / 5.3.3:
Domain Integral for Orthotropic Media / 5.3.4:
Interaction Integral / 5.3.5:
Crack-Axis Component of the Dynamic J Integral / 5.3.6:
Field Decomposition Technique / 5.3.7:
Dynamic XFEM / 5.4:
Dynamic Equations of Motion / 5.4.1:
XFEM Enrichment Functions / 5.4.2:
Time Integration Schemes / 5.4.4:
Plate with a Stationary Central Crack / 5.5:
Mode I Plate with an Edge Crack / 5.5.2:
Mixed Mode Edge Crack in Composite Plates / 5.5.3:
A Composite Plate with Double Edge Cracks under Impulsive Loading / 5.5.4:
Pre-Cracked Three Point Bending Beam under Impact Loading / 5.5.5:
Propagating Central Inclined Crack in a Circular Orthotropic Plate / 5.5.6:
Fracture Analysis of Functionally Graded Materials (FGMs) / 6:
Analytical Solution for Near a Crack Tip / 6.1:
Average Material Properties / 6.2.1:
Mode I Near Tip Fields in FGM Composites / 6.2.2:
Stress and Displacement Field (Similar to Homogeneous Orthotropic Composites) / 6.2.3:
Stress Intensity Factor / 6.3:
FGM Auxillary Fields / 6.3.1:
Isoparametric FGM / 6.3.4:
Crack Propagation in FGM Composites / 6.4:
Inhomogeneous XFEM / 6.5:
XFEM Approximation / 6.5.1:
Numerical Examples / 6.5.3:
Plate with a Centre Crack Parallel to the Material Gradient / 6.6.1:
Proportional FGM Plate with an Inclined Central Crack / 6.6.2:
Non-Proportional FGM Plate with a Fixed Inclined Central Crack / 6.6.3:
Rectangular Plate with an Inclined Crack (Non-Proportional Distribution) / 6.6.4:
Crack Propagation in a Four-Point FGM Beam / 6.6.5:
Delamination/Interlaminar Crack Analysis / 7:
Fracture Mechanics for Bimaterial Interface Cracks / 7.1:
Isotropic Bimaterial Interfaces / 7.2.1:
Orthotropic Bimaterial Interface Cracks / 7.2.2:
Stress Contours for a Crack between Two Dissimilar Orthotropic Materials / 7.2.3:
Stress Intensity Factors for Interlaminar Cracks / 7.3:
Delamination Propagation / 7.4:
Fracture Energy-Based Criteria / 7.4.1:
Stress-Based Criteria / 7.4.2:
Contact-Based Criteria / 7.4.3:
Bimaterial XFEM / 7.5:
XFEM Enrichment Functions for Bimaterial Problems / 7.5.1:
Discretization and Integration / 7.5.4:
Central Crack in an Infinite Bimaterial Plate / 7.6:
Isotropic-Orthotropic Bimaterial Crack / 7.6.2:
Orthotopic Double Cantilever Beam / 7.6.3:
Concrete Beams Strengthened with Fully Bonded GFRP / 7.6.4:
FRP Reinforced Concrete Cantilever Beam Subjected to Edge Loadings / 7.6.5:
Delamination of Metallic I Beams Strengthened by FRP Strips / 7.6.6:
Variable Section Beam Reinforced by FRP / 7.6.7:
New Orthotropic Frontiers / 8:
Orthotropic XIGA / 8.1:
NURBS Basis Function / 8.2.1:
XIGA Simulations / 8.2.2:
Orthotropic Dislocation Dynamics / 8.3:
Straight Dislocations in Anisotropic Materials / 8.3.1:
Edge Dislocations in Anisotropic Materials / 8.3.2:
Curve Dislocations in Anisotropic Materials / 8.3.3:
Anisotropic Dislocation XFEM / 8.3.4:
Plane Strain Anisotropic Solution / 8.3.5:
Individual Sliding Systems s1 and s2 in an Infinite Domain / 8.3.6:
Simultaneous Sliding Systems in an Infinite Domain / 8.3.7:
Other Anisotropic Applications / 8.4:
Biomechanics / 8.4.1:
Piezoelectric / 8.4.2:
References
Index
Preface
Nomenclature
Introduction / 1:
2.

図書

図書
O.C. Zienkiewicz, R.L. Taylor, D.D. Fox
出版情報: Oxford ; Tokyo : Butterworth-Heinemann, 2014  xxxi, 624 p. ; 24 cm
所蔵情報: loading…
3.

図書

図書
O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu
出版情報: Oxford ; Tokyo : Butterworth-Heinemann, 2013  xxxviii, 714 p. ; 25 cm
所蔵情報: loading…
4.

図書

図書
Ivo Babuška, John R. Whiteman, Theofanis Strouboulis
出版情報: Oxford : Oxford University Press, 2011  xii, 323 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
The finite element method / 1.1:
Mathematical model / 1.2:
Validation and verification / 1.3:
The finite element method, error analysis and estimation and its role in the processes of verification and validation / 1.4:
The purpose of this book and its layout / 1.5:
Literature / 1.6:
Formulations of the problems / 2:
One-dimensional deformation of an elastic bar and one-dimensional heat conduction / 2.1:
Classical differential equation formulation of the bar problem / 2.1.1:
The principle of virtual work and weak formulation / 2.1.2:
The principle of minimization of energy / 2.1.3:
One-dimensional heat transfer / 2.1.4:
Engineering application, one-dimensional heat-transfer problem / 2.1.5:
Two-dimensional heat-conduction problem / 2.2:
Classical partial differential equation formulation / 2.2.1:
Weak formulation / 2.2.2:
Engineering application; two-dimensional heat-transfer problem / 2.2.3:
Finite element methods / 3:
The Galerkin method / 3.1:
One-dimensional finite element method / 3.3:
The finite element method with piecewise linear functions / 3.3.1:
Implementation: one-dimensional problem with piecewise linear basis functions / 3.3.2:
Complete process for one-dimensional problem / 3.3.3:
The finite element method with piecewise quadratic functions / 3.3.4:
Engineering application: one-dimensional heat-transfer problem / 3.3.5:
Two-dimensional finite element method / 3.4:
Two benchmark problems / 3.4.1:
Engineering application: two-dimensional heat transfer-problems / 3.4.4:
Best approximation property of the finite element solutions / 3.5:
Interpolation and its error / 4:
Estimate of interpolation error on a single element in one dimension / 4.1:
Estimate of interpolation error on a single element in two dimensions / 4.2:
a priori estimates of the error of the finite element solution in the energy norm / 5:
Introduction to a priori error analysis / 5.1:
Error of the finite element solution in one dimension / 5.1.1:
Error analysis for the one-dimensional engineering problem of Section 3.3.5 / 5.1.2:
Two-dimensional problems / 5.2:
Error of the finite element solution in two dimensions / 5.2.1:
Error analysis for Benchmark Problems 1 and 2 / 5.2.2:
Error analysis for the two-dimensional heat-transfer problem; 2D Eng Problem / 5.2.3:
Functionals and superconvergence / 6:
One-dimensional problems / 6.1:
Error in the functionals in one dimension / 6.1.1:
Local character of the error and pollution / 6.1.2:
Superconvergence in one dimension / 6.1.3:
Engineering application; one-dimensional heat-transfer problem / 6.1.4:
The error in the functional / 6.2:
Local character of the error / 6.2.2:
Superconvergence in two dimensions / 6.2.3:
Engineering application: two-dimensional heat-transfer problem / 6.2.4:
a posteriori error estimates / 7:
Error indicators and estimators in one dimension / 7.1:
The Dirichlet element-based error estimator / 7.1.1:
The Neumann element-based error estimator / 7.1.2:
The performance of the Neumann element-based error estimator / 7.1.3:
The Dirichlet subdomain (patch) estimator / 7.1.4:
The Neumann subdomain (patch) estimator / 7.1.5:
The performance of the Neumann subdomain estimators for the one-dimensional engineering problems / 7.1.6:
Averaging-based error indicators and estimators / 7.1.7:
The performance of the ZZ-estimator for the one-dimensional engineering problems / 7.1.8:
The Richardson error estimator / 7.1.9:
The performance of the Richardson estimator / 7.1.10:
Error indicators and estimators in two dimensions / 7.2:
The performance of the Neumann element-based estimator / 7.2.1:
The Dirichlet subdomain (patch)"estimator / 7.2.4:
The performance of the Neumann subdomain (patch) estimator / 7.2.5:
Averaging-based indicators and estimators (ZZ) / 7.2.7:
The performance of the ZZ-estimator / 7.2.8:
The Richardson error estimator and its performance / 7.2.9:
Comparison of the various error estimates / 7.3:
The Neumann element error estimator / 7.3.1:
The Neumann subdomain error estimator / 7.3.2:
Averaging-based error estimators / 7.3.3:
a posteriori error estimations for the 2D engineering problem / 7.3.4:
The Neumann element-based estimator / 7.4.1:
Performance of the Neumann estimator / 7.4.2:
Performance of the ZZ-estimator / 7.4.3:
Performance of the Dirichlet subdomain estimator / 7.4.4:
Performance of the Richardson estimator / 7.4.5:
The performance of the a posteriori error estimators / 7.4.6:
Recommendations for approaching error estimation / 7.4.7:
a posteriori estimation of errors in the functional / 7.5:
Adaptive finite element methods / 7.6:
A note on verification
Epilogue
Appendix: A
Linear spaces, normed linear spaces, linear functionals, bilinear forms / A.1:
Linear space / A.1.1:
Normed linear space / A.1.2:
Inner product spaces / A.1.3:
Schwaxz inequality / A.1.4:
Convergence, completeness and Hilbert spaces / A.2:
Convergence / A.2.1:
Cauchy sequence / A.2.2:
Hilbert space / A.2.3:
Linear functionals and bilinear forms / A.3:
Linear functionals / A.3.1:
Bilinear forms / A.3.2:
The Lax-Milgram lemma / A.3.3:
Bibliography
Index
Introduction / 1:
The finite element method / 1.1:
Mathematical model / 1.2:
5.

図書

図書
Maurice Petyt
出版情報: Cambridge : Cambridge University Press, 2010  xvi, 500 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Formulation of the equations of motion / 1:
Element energy functions / 2:
Introduction to the finite element displacement method / 3:
In-plane vibration of plates / 4:
Vibration of solids / 5:
Flexural vibration of plates / 6:
Vibration of stiffened plates and folded plate structures / 7:
Vibration of shells / 8:
Vibration of laminated plates and shells / 9:
Hierarchical finite element method / 10:
Analysis of free vibration / 11:
Forced response / 12:
Forced response II / 13:
Computer analysis technique / 14:
Formulation of the equations of motion / 1:
Element energy functions / 2:
Introduction to the finite element displacement method / 3:
6.

図書

図書
A.J. Davies
出版情報: New York : Oxford University Press, 2011  ix, 297 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Historical introduction / 1:
Weighted residual and variational methods / 2:
Classification of differential operators / 2.1:
Self-adjoint positive definite operators / 2.2:
Weighted residual methods / 2.3:
Extremum formulation: homogeneous boundary conditions / 2.4:
Non-homogeneous boundary conditions / 2.5:
Partial differential equations: natural boundary conditions / 2.6:
The Rayleigh-Ritz method / 2.7:
The 'elastic analogy' for Poisson's equation / 2.8:
Variational methods for time-dependent problems / 2.9:
Exercises and solutions / 2.10:
The finite element method for elliptic problems / 3:
Difficulties associated with the application of weighted residual methods / 3.1:
Piecewise application of the Galerkin method / 3.2:
Terminology / 3.3:
Finite element idealization / 3.4:
Illustrative problem involving one independent variable / 3.5:
Finite element equations for Poisson's equation / 3.6:
A rectangular element for Poisson's equation / 3.7:
A triangular element for Poisson's equation / 3.8:
Higher-order elements: the isoparametric concept / 3.9:
A two-point boundary-value problem / 4.1:
Higher-order rectangular elements / 4.2:
Higher-order triangular elements / 4.3:
Two degrees of freedom at each node / 4.4:
Condensation of internal nodal freedoms / 4.5:
Curved boundaries and higher-order elements: isoparametric elements / 4.6:
Further topics in the finite element method / 4.7:
The variational approach / 5.1:
Collocation and least squares methods / 5.2:
Use of Galerkin's method for time-dependent and non-linear problems / 5.3:
Time-dependent problems using variational principles which are not extremal / 5.4:
The Laplace transform / 5.5:
Convergence of the finite element method / 5.6:
A one-dimensional example / 6.1:
Two-dimensional problems involving Poisson's equation / 6.2:
Isoparametric elements: numerical integration / 6.3:
Non-conforming elements: the patch test / 6.4:
Comparison with the finite difference method: stability / 6.5:
The boundary element method / 6.6:
Integral formulation of boundary-value problems / 7.1:
Boundary element idealization for Laplace's equation / 7.2:
A constant boundary element for Laplace's equation / 7.3:
A linear element for Laplace's equation / 7.4:
Time-dependent problems / 7.5:
Computational aspects / 7.6:
Pre-processor / 8.1:
Solution phase / 8.2:
Post-processor / 8.3:
Finite element method (FEM) or boundary element method (BEM)? / 8.4:
Partial differential equation models in the physical sciences / Appendix A:
Parabolic problems / A.l:
Elliptic problems / A.2:
Hyperbolic problems / A.3:
Initial and boundary conditions / A.4:
Some integral theorems of the vector calculus / Appendix B:
A formula for integrating products of area coordinates over a triangle / Appendix C:
Numerical integration formulae / Appendix D:
One-dimensional Gauss quadrature / D.l:
Two-dimensional Gauss quadrature / D.2:
Logarithmic Gauss quadrature / D.3:
Stehfest's formula and weights for numerical Laplace transform inversion / Appendix E:
References
Index
Historical introduction / 1:
Weighted residual and variational methods / 2:
Classification of differential operators / 2.1:
7.

図書

図書
O.C. Zienkiewicz, R.L. Taylor, P. Nithiarasu
出版情報: Oxford ; Tokyo : Butterworth-Heinemann, 2014  xxxvi, 544 p. ; 24 cm
所蔵情報: loading…
8.

図書

図書
Nam-Ho Kim
出版情報: New York : Springer, c2015  xiv, 430 p. ; 25 cm
所蔵情報: loading…
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼