close
1.

図書

図書
Neil Gershenfeld
出版情報: Cambridge, England : Cambridge University Press, 2000  xiv, 370 p. ; 26 cm
シリーズ名: Cambridge Series on Information and the Natural Sciences
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Interactions, Units, and Magnitudes / 2:
Units / 2.1:
Particles and Forces / 2.2:
Orders of Magnitude / 2.3:
Selected References / 2.4:
Problems / 2.5:
Noise in Physical Systems / 3:
Random Variables / 3.1:
Expectation Values / 3.1.1:
Spectral Theorems / 3.1.2:
Probability Distributions / 3.2:
Binomial / 3.2.1:
Poisson / 3.2.2:
Gaussian / 3.2.3:
Central Limit Theorem / 3.2.4:
Noise Mechanisms / 3.3:
Shot Noise / 3.3.1:
Johnson Noise / 3.3.2:
l/f Noise and Switching Noise / 3.3.3:
Amplifier Noise / 3.3.4:
Thermodynamics and Noise / 3.4:
Thermodynamics and Statistical Mechanics / 3.4.1:
Equipartition Theorem / 3.4.2:
Fluctuation--Dissipation Theorem / 3.4.3:
Information in Physical Systems / 3.5:
Information / 4.1:
Channel Capacity / 4.2:
The Gaussian Channel / 4.3:
Fisher Information / 4.4:
Information and Thermodynamics / 4.5:
Electromagnetic Fields and Waves / 4.6:
Vector Calculus / 5.1:
Vectors / 5.1.1:
Differential Operators / 5.1.2:
Integral Relationships / 5.1.3:
Statics / 5.2:
Electrostatics / 5.2.1:
Magnetostatics / 5.2.2:
Multipoles / 5.2.3:
Dynamics / 5.3:
Maxwell's Equations / 5.3.1:
Boundary Conditions / 5.3.2:
Electromagnetic Units / 5.3.3:
Radiation and Energy / 5.4:
Waves / 5.4.1:
Electromagnetic Energy / 5.4.2:
Circuits, Transmission Lines, and Waveguides / 5.5:
Circuits / 6.1:
Current and Voltage / 6.1.1:
Kirchhoff's Laws / 6.1.2:
Resistance / 6.1.3:
Power / 6.1.4:
Capacitance / 6.1.5:
Inductance / 6.1.6:
Wires and Transmission Lines / 6.2:
Skin Depth / 6.2.1:
Transmission Lines / 6.2.2:
Wave Solutions / 6.2.3:
Reflections and Terminations / 6.2.4:
Waveguides / 6.3:
Governing Equations / 6.3.1:
Rectangular Waveguides / 6.3.2:
Circular Waveguides / 6.3.3:
Dielectric Waveguides and Fiber Optics / 6.3.4:
Antennas / 6.4:
Time-Dependent Potentials / 7.1:
Dipole Radiation / 7.2:
Infinitesimal Length / 7.2.1:
Finite Length / 7.2.2:
Duality and Reciprocity / 7.3:
Antenna Types / 7.4:
Optics / 7.5:
Reflection and Refraction / 8.1:
Geometrical Optics / 8.2:
Ray Matrices / 8.2.1:
Optical Transforms / 8.2.2:
Beyond Geometrical Optics / 8.3:
Lensless Imaging and Inverse Problems / 8.4:
Matched Filters and Synthetic Lenses / 9.1:
Coherent Imaging / 9.2:
Computed Tomography / 9.3:
Magnetic Resonance Imaging / 9.4:
Inverse Problems / 9.5:
Semiconductor Materials and Devices / 9.6:
Quantum Statistical Mechanics / 10.1:
Electronic Structure / 10.2:
Junctions, Diodes, and Transistors / 10.3:
Logic / 10.4:
Limits / 10.5:
Generating, Detecting, and Modulating Light / 10.6:
Generation / 11.1:
Incandescence / 11.1.1:
Luminescence: LEDs, Lasers, and Flat Panels / 11.1.2:
Detection / 11.2:
Modulation / 11.3:
Polarization / 11.3.1:
Liquid Crystals / 11.3.2:
Smoke and Mirrors / 11.3.3:
Magnetic Storage / 11.4:
Magnetism / 12.1:
Diamagnetism / 12.1.1:
Paramagnetism / 12.1.2:
Ferro-, Antiferro-, and Ferri-magnetism / 12.1.3:
Magnetic Recording / 12.2:
Magnetic Media / 12.2.1:
Recording Systems / 12.2.2:
Measurement and Coding / 12.3:
Instrumentation / 13.1:
Amplifiers / 13.1.1:
Grounding, Shielding, and Leads / 13.1.2:
Bridges / 13.1.3:
Modulation and Detection / 13.2:
Synchronous Detection / 13.2.1:
Phase Detection and Encoding / 13.2.2:
Spread Spectrum / 13.2.3:
Digitization / 13.2.4:
Coding / 13.3:
Compression / 13.3.1:
Error Correction / 13.3.2:
Channel Coding / 13.3.3:
Cryptography / 13.3.4:
Transducers / 13.4:
Many-Body Effects / 14.1:
Superconductivity / 14.1.1:
SQUIDs / 14.1.2:
Non-Equilibrium Thermodynamics / 14.2:
Thermoelectricity / 14.2.1:
Piezoelectricity / 14.2.2:
Relativity / 14.3:
Clocks / 14.3.1:
Time / 14.3.2:
Position / 14.3.3:
Quantum Computing and Communications / 14.4:
Quantum Mechanics / 15.1:
States and Operators / 15.1.1:
Angular Momentum / 15.1.2:
Density Matrices / 15.1.3:
Communications / 15.2:
Teleportation / 15.3.1:
Computation / 15.3.4:
Searching / 15.4.1:
Transforms and Factoring / 15.4.2:
Simulation / 15.4.3:
Experimental Implementation / 15.4.4:
Problem Solutions / 15.5:
Circuits, Transmission Lines, and Wave Guides / A1.1:
Generating, Modulating, and Detecting Light / A1.7:
Quantum Computing and Communication / A1.12:
Bibliography
Index
Preface
Introduction / 1:
Interactions, Units, and Magnitudes / 2:
2.

図書

東工大
目次DB

図書
東工大
目次DB
edited by Hideo Aoki, Yasuhiko Syono, Russell J. Hemley
出版情報: New York : Cambridge University Press, 2000  xviii, 397 p.: ill.; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Contributors
Part I Introduction 1
   Chapter 1.1 Physics and Mineralogy: The Current Confluence Hideo Aoki, Yasuhiko Syono, Russell J. Hemley 3
   1.1.1 Introduction 3
   1.1.2 From Mineral Assemblages to First-Principles Theory 4
   1.1.3 Physics Meets Mineralogy: An Overview of the Articles in this Book 10
   1.1.4 Conclusion 15
   References 15
Part II Advances in Theoretical and Experimental Techniques 19
   Chapter 2.1 Density Functional Theory in Mineral Physics Lars Stixrude 21
   2.1.1 Introduction 21
   2.1.2 Theory 23
   2.1.3 Computation 31
   2.1.4 Some Applications 34
   2.1.5 Future Directions 38
   2.1.6 Conclusions 40
   Acknowledgment 41
   References 41
   Chapter 2.2 Crystallographic Orbits and Their Application to Structure Types Takeo Matsumoto 44
   2.2.1 Introduction 44
   2.2.2 Definitions 45
   2.2.3 Application of Noncharacteristic Orbits to the Derived Fluorite-Type Structures 50
   2.2.4 Summary 58
   Acknowledgments 58
   References 58
   Appendix: NCOs of the Space Groups 59
   Chapter 2.3 Accuracy in X-Ray Diffraction Larry W. Finger 63
   2.3.1 Introduction 63
   2.3.2 Axial Divergence 63
   2.3.3 Sample Positioning Errors 67
   2.3.4 Nonhydrostatic Stress 68
   2.3.5 Conclusions 70
   Acknowledgments 70
   References 70
   Chapter 2.4 Statistical Analysis of Phase-Boundary Observations Abby Kavner, Terry Speed, and Raymond Jeanloz 71
   2.4.1 Introduction 71
   2.4.2 Generalized Linear Model 73
   2.4.3 Results: Analysis of Platinum Data 75
   2.4.4 Results: Analysis of Previous Statistical Methods 77
   References 79
Part III New Findings in Oxides and Silicates 81
   Chapter 3.1 Search for a Connection Among Bond Strength, Bond Length, and Electron-Density Distributions G.V. Gibbs, M.B. Boisen, Jr., F.C. Hill, and Osamu Tamada 83
   3.1.1 Introduction 83
   3.1.2 Power-Law Relationships 86
   3.1.3 Discussion 90
   Acknowledgments 93
   References 93
   Chapter 3.2 MgO-The Simplest Oxide R.E. Cohen 95
   3.2.1 Electronic Structure of MgO 96
   3.2.2 Equation of State 101
   3.2.3 Elasticity 103
   3.2.4 Thermal Conductivity 106
   3.2.5 Melting 113
   3.2.6 Defects and Diffusion 117
   3.2.7 Summary and Conclusions 119
   Acknowledgments 120
   References 120
   Chapter 3.3 First-Principles Theoretical Study of the High-Pressure Phases of MnO and FeO: Normal and Inverse NiAs Structures Z. Fang, K. Terakura, H. Sawada, I. Solovyev, and T. Miyazaki 124
   3.3.1 Introduction 124
   3.3.2 First-Principles Calculations Based on DFT 127
   3.3.3 Plane-Wave Basis Pseudopotential Method 128
   3.3.4 Results and Discussion 130
   3.3.5 Summary of Results 140
   Acknowledgments 140
   References 140
   Chapter 3.4 Computer-Simulation Approach to the Thermoelastic, Transport, and Melting Properties of Lower-Mantle Phases Atul Patel, Lidunka Vocadlo, and G. David Price 143
   3.4.1 Introduction 143
   3.4.2 Computer-Simulation Techniques and Diffusion Models 144
   3.4.3 Geophysical Applications 151
   3.4.4 Summary 167
   References 168
Part IV Transformations in Silica 171
   Chapter 4.1 Polymorphism in Crystalline and Amorphous Silica at High Pressures Russell J. Hemley, James Badro, and David M. Teter 173
   4.1.1 Introduction 173
   4.1.2 Equilibrium High-Pressure Phases 174
   4.1.3 Metastable Crystalline High-Pressure Phases 181
   4.1.4 High-Pressure Amorphous Forms 190
   4.1.5 High-Density Liquid 196
   4.1.6 Conclusions 200
   References 200
   Chapter 4.2 Shock-Induced Phase Transitions of Rutile Structures Studies by the Molecular-Dynamics Calculation Keiji Kusaba and Yasuhiko Syono 205
   4.2.1 Introduction 205
   4.2.2 Computational Experiments 208
   4.2.3 Result 210
   4.2.4 Comparing Calculation Results with High-Pressure Experiments 219
   4.2.5 Summary 222
   Acknowledgment 222
   References 223
   Chapter 4.3 Lattice Instabilities Examined by X-ray Diffractometery and Molecular Dynamics Takamitsu Yamanaka and Taku Tsuchiya 225
   4.3.1 Introduction 225
   4.3.2 Lattice Instability Under Pressure 227
   4.3.3 Homogeneous Three-Dimensional Strain 228
   4.3.4 Effect on the Diffraction Intensity 229
   4.3.5 Effect on th3 Diffraction Profile on the FWHM 231
   4.3.6 Observations of Lattice Instability 232
   4.3.7 Simulation of Pressure-Induced Amorphization by Molecular Dynamics 234
   4.3.8 MD-Dynamics Simulation Techniques 235
   4.3.9 Mechanism of Pressure-Induced Amorphization 238
   References 240
   Chapter 4.4 Effect of Hydrostaticity on the Phase Transformations of Cristobalite Takehiko Yagi and Masaaki Yamakata 242
   4.4.1 Introduction 242
   4.4.2 Experimental 243
   4.4.3 Results 244
   4.4.4 Discussion 251
   4.4.5 Conclusion 253
   Acknowledgments 254
   References 254
Part V Novel Structures and Materials 257
   Chapter 5.1 Opportunities in the Diversity of Crystal Structures - A View from Condensed-Matter Physics Hideo Aoki 259
   5.1.1 Introduction 259
   5.1.2 Polymorphism - A Case Study in Silica 260
   5.1.3 Polymorphs in General 275
   5.1.4 Pressure-Induced Amorphisation 279
   5.1.5 Superstructures 280
   5.1.6 Metal-Insulator Transition - An Example of the Electron-Correlation Effect 284
   5.1.7 Electron-Correlation Engineering in Novel Structures 286
   Acknowledgments 293
   References 293
   Chapter 5.2 Theoretical Search for New Materials - Low-Temperature Compression of Graphitic Layered Materials S. Tsuneyuki, Y. Tateyama, T. Ogitsu, and K. Kusakabe 299
   5.2.1 Introduction 299
   5.2.2 BCN Heterodiamond 301
   5.2.3 Li-Encapsulated Diamond 303
   5.2.4 Conclusion 305
   Acknowledgments 306
   References 306
   Chapter 5.3 H...H Interactions and Order-Disorder at High Pressure in Layered Hydroxides and Dense Hydrous Phases J.B. Parise, H. Kagi, J.S. Loveday, R.J. Nelmes, and W.G. Marshall 308
   5.3.1 Introduction 308
   5.3.2 Experimental Details 314
   5.3.3 Results 316
   5.3.4 Discussion 318
   5.3.5 Conclusion and Future Work 319
   Acknowledgments 319
   References 320
Part VI Melts and Crystal-Melt Interactions 323
   Chapter 6.1 Comparison of Pair-Potential Models for the Simulation of Liquid SiO2: Thermodynamic, Angular-Distribution, and Diffusional Properties M. Hemmati and C.A. Angell 325
   6.1.1 Introduction 325
   6.1.2 Procedures 328
   6.1.3 Results 330
   6.1.4 Discussion 335
   6.1.5 Conclusions 336
   Acknowledgments 336
   References 337
   Chapter 6.2 Transport Properties of Silicate Melts at High Pressure Brent T. Poe and David C. Rubie 340
   6.2.1 Introduction 340
   6.2.2 Previous Experimental Studies 342
   6.2.3 Experimental Methods 344
   6.2.4 Ion-Microprobe Probe Analysis 345
   6.2.5 Results and Discussion 346
   Acknowledgments 351
   References 352
   Chapter 6.3 Structural Characterization of Oxide Melts with Advanced X-Ray-Diffraction Methods Yoshio Waseda and Kazumasa Sugiyama 354
   6.3.1 Introduction 354
   6.3.2 Ordinary Angular-Dispersive X-Ray Diffraction 355
   6.3.3 Energy-Dispersive X-Ray Diffraction 363
   6.3.4 Anomalous X-Ray-Scattering Method 369
   6.3.5 Summary 377
   Acknowledgments 378
   References 378
   Chapter 6.4 Computer-Simulation Approach for the Prediction of Trace-Element Partitioning Between Crystal and Melt Masami Kanzaki 381
   6.4.1 Introduction 381
   6.4.2 Calculation Procedure 382
   6.4.3 Results 385
   6.4.4 Discussion 388
   Acknowledgments 389
   References 389
Subject Index 391
Materials Formula Index 395
Index of Contributors 397
Preface
List of Contributors
Part I Introduction 1
3.

図書

図書
U. Rössler
出版情報: Berlin : Physica-Verlag, c2009  xxii, 398 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
List of Symbols
Introduction / 1:
Aims and Outline / 1.1:
The Structure of Solids / 1.2:
Pair-Distribution Function and Structure Factor / 1.3:
Problems
The Solid as a Many-Particle Problem / 2:
The Hamiltonian of the Solid / 2.1:
Separating the Motion of Electrons and Ions / 2.2:
Thermal Expectation Values / 2.3:
Theory of Linear Response / 2.4:
Kubo's Formulas: Response Functions / 2.5:
Properties of Response Functions / 2.6:
Lattice Dynamics: Phonons / 3:
Harmonic Approximation / 3.1:
Normal Coordinates / 3.2:
Phonons and Occupation Number Representation / 3.3:
Acoustic Phonons / 3.4:
Optical Phonons / 3.5:
Examples: Phonon Dispersion Curves / 3.6:
The Crystal Lattice at Finite Temperature / 3.7:
The Free Electron Gas / 4:
Free Electrons Without Interaction / 4.1:
Free Electrons in a Magnetic Field / 4.2:
Occupation Number Representation for Electrons / 4.3:
Hartree-Fock Approximation / 4.4:
The Dielectric Function / 4.5:
Discussion of the Dielectric Function / 4.6:
Electronic Correlation / 4.7:
Electrons in a Periodic Potential / 5:
Density Functional Theory / 5.1:
Bloch Electrons and Band Structure / 5.2:
Almost Free Electrons and Pseudo-Potentials / 5.3:
LCAO and Tight-Binding Approximation / 5.4:
Effective-Mass Approximation / 5.5:
Subbands in Semiconductor Quantum Structures / 5.6:
Spin Waves: Magnons / 6:
Preliminaries / 6.1:
The Heisenberg Hamiltonian / 6.2:
Spin Waves in Ferromagnets / 6.3:
Spin Waves in Anti-Ferromagnets / 6.4:
Molecular Field Approximation / 6.5:
Itinerant Electron Magnetism / 6.6:
Correlated Electrons / 7:
Retarded Green Function for Electrons / 7.1:
The Hubbard Model / 7.2:
Fermi Liquids / 7.3:
Luttinger Liquids / 7.4:
Heavy Fermion Systems / 7.5:
Fractional Quantum Hall States / 7.6:
Electron-Phonon Interaction / 8:
Coupling Mechanisms / 8.1:
Scattering Processes: Lifetime, Relaxation / 8.3:
The Frohlich Polaron / 8.4:
Effective Electron-Electron Interaction / 8.5:
Cooper Pairs and the Gap / 8.6:
Defects, Disorder, and Localization / 9:
Point Defects / 9.1:
Disorder / 9.2:
Approximations for Impurity Scattering / 9.3:
Electric Conductivity / 9.4:
Metal-Insulator Transition / 9.5:
Light-Matter Interaction / 10:
Single-Particle Approximation / 10.1:
Excitons / 10.3:
Polaritons / 10.4:
Light-Scattering / 10.5:
Coherent Interband Dynamics / 10.6:
Semiconductor Bloch Equations / 10.7:
Appendices / A:
Elements of Group Theory / A.1:
Fourier Series and Fourier Transforms / A.2:
Fermi and Bose Integrals / A.3:
Sommerfeld Expansion / A.4:
Calculation of the Exchange Energy / A.5:
Operators in Fock Representation / A.6:
References
Solutions
Index
List of Symbols
Introduction / 1:
Aims and Outline / 1.1:
4.

電子ブック

EB
J. B. Ketterson
出版情報: [Oxford] : Oxford University Press, [20--]  1 online resource
所蔵情報: loading…
5.

電子ブック

EB
edited by Chérif F. Matta and Russell J. Boyd
出版情報: Weinheim : [Chichester] : Wiley-VCH ; [John Wiley [distributor], 〓2007  1 online resource (xxxviii, 527 pages)
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Preface
List of Abbreviations
Appearing in this Volume
List of Contributors
An Introduction to the Quantum Theory of Atoms in Molecules / ChA?rif F. Matta ; Russell J. Boyd1:
Introduction / 1.1:
The Topology of the Electron Density / 1.2:
The Topology of the Electron Density Dictates the Form of Atoms in Molecules / 1.3:
The Bond and Virial Paths, and the Molecular and Virial Graphs / 1.4:
The Atomic Partitioning of Molecular Properties / 1.5:
The Nodal Surface in the Laplacian as the Reactive Surface of a Molecule / 1.6:
Bond Properties / 1.7:
Atomic Properties / 1.8:
"Practical" Uses and Utility of QTAIM Bond and Atomic Properties / 1.9:
Steps of a Typical QTAIM Calculation / 1.10:
References
Advances in Theory / Part 1:
The Lagrangian Approach to Chemistry / Richard F. W. Bader2:
The Lagrangian Approach / 2.1:
The Action Principle in Quantum Mechanics / 2.3:
From Schr??dinger to Schwinger / 2.4:
Molecular Structure and Structural Stability / 2.5:
Reections and the Future / 2.6:
Atomic Response Properties / Todd A. Keith3:
Apparent Origin-dependence of Some Atomic Response Properties / 3.1:
Bond Contributions to "Null" Molecular Properties / 3.3:
Bond Contributions to Atomic Charges in Neutral Molecules / 3.4:
Atomic Contributions to Electric Dipole Moments of Neutral Molecules / 3.5:
Atomic Contributions to Electric Polarizabilities / 3.6:
Atomic Contributions to Vibrational Infrared Absorption Intensities / 3.7:
Atomic Nuclear Virial Energies / 3.8:
Atomic Contributions to Induced Electronic Magnetic Dipole Moments / 3.9:
Atomic Contributions to Magnetizabilities of Closed-Shell Molecules / 3.10:
QTAIM Analysis of Raman Scattering Intensities: Insights into the Relationship Between Molecular Structure and Electronic Charge Flow / Kathleen M. Gough ; Richard Dawes ; Jason R. Dwyer ; Tammy L. Welshman4:
Background to the Problem / 4.1:
Methodology / 4.3:
Speci.c Examples of the Use of AIM2000 Software to Analyze Raman Intensities / 4.4:
Patterns in I? That Are Discovered Through QTAIM / 4.5:
Patterns in qa/qr CH That Apply Across Di.erent Structures, Conformations, Molecular Types: What is Transferable? / 4.6:
What Can We Deduce From Simple Inspection of delta;alpha;/delta;r CH and delta;alpha;/delta;r CC From Gaussian? / 4.7:
Conclusion / 4.8:
Topological Atom-Atom Partitioning of Molecular Exchange Energy and its Multipolar Convergence / Michel Rafat ; Paul L. A. Popelier5:
Theoretical Background / 5.1:
Details of Calculations / 5.3:
Results and Discussion / 5.4:
The ELF Topological Analysis Contribution to Conceptual Chemistry and Phenomenological Models / Bernard Silvi ; Ronald J. Gillespie5.5:
Why ELF and What is ELF? / 6.1:
Concepts from the ELF Topology / 6.3:
VSEPR Electron Domains and the Volume of E / 6.4:
Foreword
Preface
List of Abbreviations
6.

図書

図書
Giuseppe Grosso, Giuseppe Pastori Parravicini
出版情報: San Diego ; Tokyo : Academic Press, c2000  xiii, 727 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Electrons in one-dimensional periodic potentials / Chapter I:
The Bloch theorem for one-dimensional periodicity / 1:
Energy levels in a periodic array of quantum wells / 2:
Electron tunneling and energy bands / 3:
Transmission and reflection of electrons through an arbitrary potential / 3.1:
Electron tunneling through a periodic potential / 3.2:
The tight-binding approximation / 4:
Expansion in localized orbitals / 4.1:
Tridiagonal matrices and continued fractions / 4.2:
Plane waves and nearly free-electron approximation / 5:
Expansion in plane waves / 5.1:
The Mathieu potential and the continued fraction solution / 5.2:
Some dynamical aspects of electrons in band theory / 6:
Further reading
Geometrical description of crystals: direct and reciprocal lattices / Chapter II:
Simple lattices and composite lattices
Periodicity and Bravais lattices / 1.1:
Simple and composite crystal structures / 1.2:
Geometrical description of some crystal structures
Wigner-Seitz primitive cells
Reciprocal lattices
Definitions and basic properties
Planes and directions in Bravais lattices
Brillouin zones
Translational symmetry and quantum mechanical aspects
Translational symmetry and Bloch wavefunctions / 6.1:
The parametric k [times] p Hamiltonian / 6.2:
Cyclic boundary conditions / 6.3:
Special k points for averaging over the Brillouin zone / 6.4:
Density-of-states and critical points / 7:
The Sommerfeld free-electron theory of metals / Chapter III:
Quantum theory of the free-electron gas
Fermi-Dirac distribution function and chemical potential
Electronic specific heat in metals and thermodynamic functions
Thermionic emission from metals
Outline of statistical physics and thermodynamic relations / Appendix A.:
Microcanonical ensemble and thermodynamic quantities / A1.:
Canonical ensemble and thermodynamic quantities / A2.:
Grand canonical ensemble and thermodynamic quantities / A3.:
Fermi-Dirac and Bose-Einstein statistics for independent particles / Appendix B.:
Modified Fermi-Dirac statistics in a model of correlation effects / Appendix C.:
The one-electron approximation and beyond / Chapter IV:
Introductory remarks on the many-electron problem
The Hartree equations
Identical particles and determinantal wavefunctions
Matrix elements between determinantal states
The Hartree-Fock equations
Variational approach and Hartree-Fock equations
Ground-state energy, ionization energies and transition energies
Hartree-Fock equations and transition energies in closed-shell systems / 5.3:
Hartree-Fock-Slater and Hartree-Fock-Roothaan approximations / 5.4:
Overview of approaches beyond the one-electron approximation
Electronic properties and phase diagram of the homogeneous electron gas
The density functional theory and the Kohn-Sham equations / 8:
Bielectronic integrals among spin-orbitals
Outline of second quantization formalism for identical fermions
An integral on the Fermi sphere
Band theory of crystals / Chapter V:
Basic assumptions of the band theory
The tight-binding method (LCAO method)
Description of the method for simple lattices / 2.1:
Description of the tight-binding method for composite lattices / 2.2:
Illustrative applications of the tight-binding scheme / 2.3:
The orthogonalized plane wave (OPW) method
The pseudopotential method
The cellular method
The augmented plane wave (APW) method
Description of the method
Expression and evaluation of the matrix elements of the APW method
The Green's function method (KKR method)
Scattering integral equation for a generic potential / 7.1:
Scattering integral equation for a periodic muffin-tin potential / 7.2:
Expression and evaluation of the structure coefficients / 7.3:
Other methods and developments in electronic structure calculations
The linearized cellular methods / 8.1:
The Lanczos or recursion method / 8.2:
Modified Lanczos method for excited states / 8.3:
Renormalization method for electronic systems / 8.4:
Electronic properties of selected crystals / Chapter VI:
Band structure and cohesive energy of rare-gas solids
General features of band structure of rare-gas solids
Cohesive energy of rare-gas solids
Electronic properties of ionic crystals
Introductory remarks and Madelung constant
Considerations on bands and bonds in ionic crystals
Covalent crystals with diamond structure
Band structures and Fermi surfaces of some metals
Excitons, plasmons and dielectric screening in crystals / Chapter VII:
Exciton states in crystals
Plasmon excitations in crystals
General considerations on the longitudinal dielectric function
Static dielectric screening in metals with the Thomas-Fermi model
Static dielectric screening in metals with the Lindhard model
Dynamic dielectric screening in metals and plasmon modes
Quantum expression of the longitudinal dielectric function in materials
Quantum expression of the longitudinal dielectric function in crystals
Longitudinal dielectric function and energy-loss of a fast charged particle / 9:
Lindhard dielectric function for the free-electron gas
Interacting electronic-nuclear systems and the adiabatic principle / Chapter VIII:
Electronic-nuclear systems and adiabatic potential-energy surfaces
Non-degenerate adiabatic surface and nuclear dynamics
Non-degenerate adiabatic surface and classical nuclear dynamics
Non-degenerate adiabatic surface and quantum nuclear dynamics
Degenerate adiabatic surfaces and Jahn-Teller systems
Degenerate adiabatic surfaces and nuclear dynamics
The Jahn-Teller effect for doubly degenerate electronic states
The Jahn-Teller effect for triply degenerate electronic states / 3.3:
The Hellmann-Feynman theorem and electronic-nuclear systems
General considerations on the Hellmann-Feynman theorem
Charge density and atomic forces
Parametric Hamiltonians and Berry phase
Macroscopic electric polarization in crystals and Berry phase
Lattice dynamics of crystals / Chapter IX:
Dynamics of monatomic one-dimensional lattices
Dynamics of diatomic one-dimensional lattices
Dynamics of general three-dimensional crystals
Quantum theory of the harmonic crystal
Lattice heat capacity. Einstein and Debye models
Considerations on anharmonic effects and melting of solids
Optical phonons and polaritons in polar crystals
General considerations
Lattice vibrations in polar crystals and polaritons
Local field effects on polaritons
Quantum theory of the linear harmonic oscillator
Scattering of particles by crystals / Chapter X:
Elastic scattering of X-rays from crystals
Elastic scattering of X-rays and Bragg diffraction condition
Elastic scattering of X-rays and intensity of diffracted beams
Inelastic scattering of particles and phonon spectra of crystals
Compton scattering and electron momentum density
Diffusion of particles by a single elastically-bound scatterer
Dynamical structure factor of a single scattering center
Dynamical structure factor of a three-dimensional harmonic oscillator
Diffusion of particles by a crystal and effects of lattice vibrations
Mossbauer effect
Optical and transport properties in metals / Chapter XI:
Macroscopic theory of optical constants in homogeneous materials
The Drude theory of the optical properties of free carriers
Transport properties and Boltzmann equation
Static and dynamic conductivity in metals
Static conductivity with the Boltzmann equation
Frequency and wavevector dependence of the conductivity
Anomalous skin effect / 4.3:
Boltzmann treatment and quantum treatment of intraband transitions
The Boltzmann equation in electric fields and temperature gradients
The transport equations in general form
Thermoelectric phenomena
Optical properties of semiconductors and insulators / Chapter XII:
Quantum expression of the transverse dielectric function in materials
Optical constants of homogeneous media in the linear response theory
Optical constants and Green's function of the electronic system
Quantum theory of band-to-band optical transitions and critical points
Indirect phonon-assisted transitions
Two-photon absorption
Exciton effects on the optical properties
Fano resonances and absorption lineshapes
Optical properties of vibronic systems
Optical properties of the Frank-Condon vibronic model
Optical properties of typical Jahn-Teller systems
Transitions rates at first and higher orders of perturbation theory
Transport in intrinsic and homogeneously doped semiconductors / Chapter XIII:
Fermi level and carrier density in intrinsic semiconductors
Impurity levels in semiconductors
Fermi level and carrier density in doped semiconductors
Thermionic emission in semiconductors
Non-equilibrium carrier distributions
Drift and diffusion currents
Generation and recombination of electron-hole pairs in semiconductors
Solutions of typical transport equations in uniformly doped semiconductors
Transport in inhomogeneous semiconductors / Chapter XIV:
Properties of the pn junction at equilibrium
Current-voltage characteristics of the pn junction
The bipolar junction transistor
The junction field-effect transistor (JFET)
Semiconductor heterojunctions
Metal-semiconductor contacts and MESFET transistor
The metal-oxide-semiconductor structure and MOSFET transistor
Electron gas in magnetic fields / Chapter XV:
Magnetization and magnetic susceptibility
Energy levels and density-of-states of a free-electron gas in magnetic fields
Energy levels of the two-dimensional electron gas in magnetic fields
Energy levels of the three-dimensional electron gas in magnetic fields
Orbital magnetic susceptibility and de Haas-van Alphen effect
Orbital magnetic susceptibility of a two-dimensional electron gas
Orbital magnetic susceptibility of a three-dimensional electron gas
Spin paramagnetism of a free-electron gas
Magnetoresistivity and classical Hall effect
The quantum Hall effect
Free energy of an electron gas in a uniform magnetic field
Generalized orbital magnetic susceptibility of the free-electron gas
Magnetic properties of localized systems and Kondo impurities / Chapter XVI:
Quantum mechanical treatment of magnetic susceptibility
Magnetic susceptibility of closed-shell systems
Permanent magnetic dipoles in atoms or ions with partially filled shells
Paramagnetism of localized magnetic moments
Localized magnetic states in normal metals
Dilute magnetic alloys and the resistance minimum phenomenon
Some phenomenological aspects
The resistance minimum phenomenon
Microscopic origin of the Kondo interaction: a molecular model
Magnetic impurity in normal metals at very low temperatures
Magnetic ordering in crystals / Chapter XVII:
Ferromagnetism and the Weiss molecular field
Microscopic origin of the coupling between localized magnetic moments
Antiferromagnetism in the mean field approximation
Spin waves and magnons in ferromagnetic crystals
The Ising model with the transfer matrix method
The Ising model with the renormalization group theory
The Stoner-Hubbard itinerant electron model for magnetism
Superconductivity / Chapter XVIII:
Some phenomenological aspects of superconductors
The Cooper pair idea
Ground state for a superconductor in the BCS theory at zero temperature
Variational determination of the ground-state wavefunction
Ground-state energy and isotopic effect
Momentum distribution and coherence length
Excited states of superconductors at zero temperature
The Bogoliubov canonical transformation
Persistent currents in superconductors
Electron tunneling into superconductors
Treatment of superconductors at finite temperature and heat capacity
Diamagnetism of superconductors and Meissner effect
The phenomenological London model
Pippard electrodynamics and effective magnetic penetration depth
Macroscopic quantum phenomena
Order parameter in superconductors and Ginzburg-Landau theory
Magnetic flux quantization
Type-I and type-II superconductors
Cooper pair tunneling between superconductors and Josephson effects
The phonon-induced electron-electron interaction
Subject index
Preface
Electrons in one-dimensional periodic potentials / Chapter I:
The Bloch theorem for one-dimensional periodicity / 1:
7.

図書

図書
Charles Kittel
出版情報: New York : Wiley, c2005  xix, 680 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Crystal Structure / Chapter 1:
Periodic Array of Atoms
Fundamental Types of Lattices
Index System for Crystal Planes
Simple Crystal Structures
Direct Imaging of Atomic Structure
Nonideal Crystal Structures
Crystal Structure Data
Wave Diffraction and the Reciprocal Lattice / Chapter 2:
Diffraction of Waves by Crystals
Scattered Wave Amplitude
Brillouin Zones
Fourier Analysis of the Basis
Crystal Binding and Elastic Constants / Chapter 3:
Crystals of Inert Gases
Ionic Crystals
Covalent Crystals
Metals
Hydrogen Bonds
Atomic Radii
Analysis of Elastic Strains
Elastic Compliance and Stiffness Constants
Elastic Waves in Cubic Crystals
Phonons I. Crystal Vibrations / Chapter 4:
Vibrations of Crystals with Monatomic Basis
Two Atoms per Primitive Basis
Quantization of Elastic Waves
Phonon Momentum
Inelastic Scattering by Phonons
Phonons II. Thermal Properties / Chapter 5:
Phonon Heat Capacity
Anharmonic Crystal Interactions
Thermal Conductivity
Free Electron Fermi Gas / Chapter 6:
Energy Levels in One Dimension
Effect of Temperature on the Fermi-Dirac Distribution
Free Electron Gas in Three Dimensions
Heat Capacity of the Electron Gas
Electrical Conductivity and Ohm?s Law
Motion in Magnetic Fields
Thermal Conductivity of Metals
Energy Bands / Chapter 7:
Nearly Free Electron Model
Bloch Functions
Kronig-Penney Model
Wave Equation of Electron in a Periodic Potential
Number of Orbitals in a Band
Semiconductor Crystals / Chapter 8:
Band Gap
Equations of Motion
Intrinsic Carrier Concentration
Impurity Conductivity
Thermoelectric Effects
Semimetals
Superlattices
Fermi Surfaces and Metals / Chapter 9:
Construction of Fermi Surfaces
Electron Orbits, Hole Orbits, and Open Orbits
Calculation of Energy Bands
Experimental Methods in Fermi Surface Studies
Superconductivity / Chapter 10:
Experimental Survey
Theoretical Survey
High-Temperature Superconductors
Diamagnetism and Paramagnetism / Chapter 11:
Langevin Diamagnetism Equation
Quantum Theory of Diamagnetism of Mononuclear Systems.Paramagnetism
Quantum Theory of Paramagnet
Crystal Structure / Chapter 1:
Periodic Array of Atoms
Fundamental Types of Lattices
8.

図書

図書
Gerald D. Mahan
出版情報: New York : Kluwer Academic/Plenum, c2000  xii, 785 p. ; 26 cm
シリーズ名: Physics of solids and liquids
所蔵情報: loading…
目次情報: 続きを見る
Introductory Material / 1.:
Harmonic Oscillators and Phonons / 1.1.:
Second Quantization for Particles / 1.2.:
Electron-Phonon Interactions / 1.3.:
Interaction Hamiltonian / 1.3.1.:
Localized Electron / 1.3.2.:
Deformation Potential / 1.3.3.:
Piezoelectric Interaction / 1.3.4.:
Polar Coupling / 1.3.5.:
Spin Hamiltonians / 1.4.:
Homogeneous Spin Systems / 1.4.1.:
Impurity Spin Models / 1.4.2.:
Photons / 1.5.:
Gauges / 1.5.1.:
Lagrangian / 1.5.2.:
Hamiltonian / 1.5.3.:
Pair Distribution Function / 1.6.:
Problems
Green's Functions at Zero Temperature / 2.:
Interaction Representation / 2.1.:
Schrodinger / 2.1.1.:
Heisenberg / 2.1.2.:
Interaction / 2.1.3.:
S Matrix / 2.2.:
Green's Functions / 2.3.:
Wick's Theorem / 2.4.:
Feynman Diagrams / 2.5.:
Vacuum Polarization Graphs / 2.6.:
Dyson's Equation / 2.7.:
Rules for Constructing Diagrams / 2.8.:
Time-Loop S Matrix / 2.9.:
Six Green's Functions / 2.9.1.:
Photon Green's Functions / 2.9.2.:
Nonzero Temperatures / 3.:
Introduction / 3.1.:
Matsubara Green's Functions / 3.2.:
Retarded and Advanced Green's Functions / 3.3.:
Frequency Summations / 3.4.:
Linked Cluster Expansions / 3.6.:
Thermodynamic Potential / 3.6.1.:
Real-Time Green's Functions / 3.6.2.:
Wigner Distribution Function / 3.7.1.:
Kubo Formula for Electrical Conductivity / 3.8.:
Transverse Fields, Zero Temperature / 3.8.1.:
Zero Frequency / 3.8.2.:
Photon Self-Energy / 3.8.4.:
Other Kubo Formulas / 3.9.:
Pauli Paramagnetic Susceptibility / 3.9.1.:
Thermal Currents and Onsager Relations / 3.9.2.:
Correlation Functions / 3.9.3.:
Exactly Solvable Models / 4.:
Potential Scattering / 4.1.:
Reaction Matrix / 4.1.1.:
T Matrix / 4.1.2.:
Friedel's Theorem / 4.1.3.:
Impurity Scattering / 4.1.4.:
Ground State Energy / 4.1.5.:
Localized State in the Continuum / 4.2.:
Independent Boson Models / 4.3.:
Solution by Canonical Transformation / 4.3.1.:
Feynman Disentangling of Operators / 4.3.2.:
Einstein Model / 4.3.3.:
Optical Absorption and Emission / 4.3.4.:
Sudden Switching / 4.3.5.:
Linked Cluster Expansion / 4.3.6.:
Bethe Lattice / 4.4.:
Electron Green's Function / 4.4.1.:
Ising Model / 4.4.2.:
Tomonaga Model / 4.5.:
Spin Waves / 4.5.1.:
Luttinger Model / 4.5.3.:
Single-Particle Properties / 4.5.4.:
Interacting System of Spinless Fermions / 4.5.5.:
Polaritons / 4.6.:
Semiclassical Discussion / 4.6.1.:
Phonon-Photon Coupling / 4.6.2.:
Exciton-Photon Coupling / 4.6.3.:
Homogeneous Electron Gas / 5.:
Exchange and Correlation / 5.1.:
Kinetic Energy / 5.1.1.:
Hartree / 5.1.2.:
Exchange / 5.1.3.:
Seitz's Theorem / 5.1.4.:
[Sigma superscript (2a)] / 5.1.5.:
[Sigma superscript (2b)] / 5.1.6.:
[Sigma superscript (2c)] / 5.1.7.:
High-Density Limit / 5.1.8.:
Wigner Lattice / 5.1.9.:
Metallic Hydrogen / 5.3.:
Linear Screening / 5.4.:
Model Dielectric Functions / 5.5.:
Thomas-Fermi / 5.5.1.:
Lindhard, or RPA / 5.5.2.:
Hubbard / 5.5.3.:
Singwi-Sjolander / 5.5.4.:
Local Field Corrections / 5.5.5.:
Vertex Corrections / 5.5.6.:
Properties of the Electron Gas / 5.6.:
Screening Charge / 5.6.1.:
Correlation Energies / 5.6.3.:
Compressibility / 5.6.4.:
Sum Rules / 5.6.5.:
One-Electron Properties / 5.8.:
Renormalization Constant Z[subscript F] / 5.8.1.:
Effective Mass / 5.8.2.:
Mean-Free-Path / 5.8.3.:
Strong Correlations / 6.:
Kondo Model / 6.1.:
High-Temperature Scattering / 6.1.1.:
Low-Temperature State / 6.1.2.:
Kondo Temperature / 6.1.3.:
Kondo Resonance / 6.1.4.:
Single-Site Anderson Model / 6.2.:
No Hybridization / 6.2.1.:
With Hybridization / 6.2.2.:
Self-Energy of Electrons / 6.2.3.:
Hubbard Model / 6.3.:
Spin and Charge Separation / 6.3.1.:
Exchange Graphs / 6.3.2.:
Hubbard Model: Magnetic Phases / 6.4.:
Ferromagnetism / 6.4.1.:
Antiferromagnetism / 6.4.2.:
An Example / 6.4.3.:
Electron-Phonon Interaction / 6.4.4.:
Frohlich Hamiltonian / 7.1.:
Brillouin-Wigner Perturbation Theory / 7.1.1.:
Rayleigh-Schrodinger Perturbation Theory / 7.1.2.:
Strong Coupling Theory / 7.1.3.:
Linked Cluster Theory / 7.1.4.:
Small Polaron Theory / 7.2.:
Large Polarons / 7.2.1.:
Small Polarons / 7.2.2.:
Diagonal Transitions / 7.2.3.:
Nondiagonal Transitions / 7.2.4.:
Kubo Formula / 7.2.5.:
Heavily Doped Semiconductors / 7.3.:
Screened Interaction / 7.3.1.:
Experimental Verifications / 7.3.2.:
Electron Self-Energies / 7.3.3.:
Metals / 7.4.:
Phonons in Metals / 7.4.1.:
dc Conductivities / 7.4.2.:
Electron Scattering by Impurities / 8.1.:
Boltzmann Equation / 8.1.1.:
Kubo Formula: Approximate Solution / 8.1.2.:
Ward Identities / 8.1.3.:
Mobility of Frohlich Polarons / 8.2.:
Electron-Phonon Relaxation Times / 8.3.:
Semiconductors / 8.3.1.:
Temperature Relaxation / 8.3.3.:
Electron-Phonon Interactions in Metals / 8.4.:
Force-Force Correlation Function / 8.4.1.:
Mass Enhancement / 8.4.2.:
Thermoelectric Power / 8.4.4.:
Quantum Boltzmann Equation / 8.5.:
Derivation of the QBE / 8.5.1.:
Gradient Expansion / 8.5.2.:
Quantum Dot Tunneling / 8.5.3.:
Electron Tunneling / 8.6.1.:
Quantum Dots / 8.6.2.:
Rate Equations / 8.6.3.:
Quantum Conductance / 8.6.4.:
Optical Properties of Solids / 9.:
Nearly Free-Electron Systems / 9.1.:
General Properties / 9.1.1.:
Force-Force Correlation Functions / 9.1.2.:
Frohlich Polarons / 9.1.3.:
Interband Transitions / 9.1.4.:
Phonons / 9.1.5.:
Wannier Excitons / 9.2.:
The Model / 9.2.1.:
Solution by Green's Functions / 9.2.2.:
Core-Level Spectra / 9.2.3.:
X-ray Spectra in Metals / 9.3.:
Physical Model / 9.3.1.:
Edge Singularities / 9.3.2.:
Orthogonality Catastrophe / 9.3.3.:
MND Theory / 9.3.4.:
XPS Spectra / 9.3.5.:
Superconductivity / 10.:
Cooper Instability / 10.1.:
BCS Theory / 10.1.1.:
Superconducting Tunneling / 10.2.:
Normal-Superconductor / 10.2.1.:
Two Superconductors / 10.2.2.:
Josephson Tunneling / 10.2.3.:
Infrared Absorption / 10.2.4.:
Transition Temperature / 10.3.:
Superfluids / 11.:
Liquid [superscript 4]He / 11.1.:
Hartree and Exchange / 11.1.1.:
Bogoliubov Theory of [superscript 4]He / 11.1.2.:
Off-Diagonal Long-Range Order / 11.1.3.:
Correlated Basis Functions / 11.1.4.:
Experiments on n[subscript k] / 11.1.5.:
Bijl-Feynman Theory / 11.1.6.:
Improved Excitation Spectra / 11.1.7.:
Superfluidity / 11.1.8.:
Liquid [superscript 3]He / 11.2.:
Fermi Liquid Theory / 11.2.1.:
Experiments and Microscopic Theories / 11.2.2.:
Interaction Between Quasiparticles: Excitations / 11.2.3.:
Quasiparticle Transport / 11.2.4.:
Superfluid [superscript 3]He / 11.2.5.:
Quantum Hall Effects / 11.3.:
Landau Levels / 11.3.1.:
Classical Hall Effect / 11.3.2.:
Quantum Hall Effect / 11.3.3.:
Fixed Density / 11.3.3.1.:
Fixed Chemical Potential / 11.3.3.2.:
Impurity Dominated / 11.3.3.3.:
Laughlin Wave Function / 11.3.4.:
Collective Excitations / 11.3.5.:
Magnetorotons / 11.3.5.1.:
Quasiholes / 11.3.5.2.:
References
Author Index
Subject Index
Introductory Material / 1.:
Harmonic Oscillators and Phonons / 1.1.:
Second Quantization for Particles / 1.2.:
9.

図書

図書
Charles Kittel
出版情報: Hoboken, N.J. : J. Wiley, c2005  xix, 680 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Crystal Structure / Chapter 1:
Periodic Array of Atoms
Fundamental Types of Lattices
Index System for Crystal Planes
Simple Crystal Structures
Direct Imaging of Atomic Structure
Nonideal Crystal Structures
Crystal Structure Data
Wave Diffraction and the Reciprocal Lattice / Chapter 2:
Diffraction of Waves by Crystals
Scattered Wave Amplitude
Brillouin Zones
Fourier Analysis of the Basis
Crystal Binding and Elastic Constants / Chapter 3:
Crystals of Inert Gases
Ionic Crystals
Covalent Crystals
Metals
Hydrogen Bonds
Atomic Radii
Analysis of Elastic Strains
Elastic Compliance and Stiffness Constants
Elastic Waves in Cubic Crystals
Phonons I. Crystal Vibrations / Chapter 4:
Vibrations of Crystals with Monatomic Basis
Two Atoms per Primitive Basis
Quantization of Elastic Waves
Phonon Momentum
Inelastic Scattering by Phonons
Phonons II. Thermal Properties / Chapter 5:
Phonon Heat Capacity
Anharmonic Crystal Interactions
Thermal Conductivity
Free Electron Fermi Gas / Chapter 6:
Energy Levels in One Dimension
Effect of Temperature on the Fermi-Dirac Distribution
Free Electron Gas in Three Dimensions
Heat Capacity of the Electron Gas
Electrical Conductivity and Ohm?s Law
Motion in Magnetic Fields
Thermal Conductivity of Metals
Energy Bands / Chapter 7:
Nearly Free Electron Model
Bloch Functions
Kronig-Penney Model
Wave Equation of Electron in a Periodic Potential
Number of Orbitals in a Band
Semiconductor Crystals / Chapter 8:
Band Gap
Equations of Motion
Intrinsic Carrier Concentration
Impurity Conductivity
Thermoelectric Effects
Semimetals
Superlattices
Fermi Surfaces and Metals / Chapter 9:
Construction of Fermi Surfaces
Electron Orbits, Hole Orbits, and Open Orbits
Calculation of Energy Bands
Experimental Methods in Fermi Surface Studies
Superconductivity / Chapter 10:
Experimental Survey
Theoretical Survey
High-Temperature Superconductors
Diamagnetism and Paramagnetism / Chapter 11:
Langevin Diamagnetism Equation
Quantum Theory of Diamagnetism of Mononuclear Systems.Paramagnetism
Quantum Theory of Paramagnet
Crystal Structure / Chapter 1:
Periodic Array of Atoms
Fundamental Types of Lattices
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼