close
1.

図書

図書
edited by David Barry ... [et al.]
出版情報: Wymondham : Horizon Bioscience, c2007  xi, 423 p. ; 24 cm
所蔵情報: loading…
2.

図書

図書
edited by Stanley M. Roberts, John Whittall
出版情報: Chichester : J. Wiley & Sons, c2007  xxii, 312 p. ; 24 cm
シリーズ名: Catalysts for fine chemical synthesis ; v. 5
所蔵情報: loading…
目次情報: 続きを見る
Series Preface
Preface to Volume 5
Abbreviations
Industrial Catalysts for Regio- or Stereo-Selective Oxidations and Reductions A Review of Key Technologies and Targets / John Whittall1:
Introduction / 1.1:
Reduction of Carbon-Carbon Double Bonds / 1.2:
Privileged structures: [alpha]-amino acids and itaconic acids / 1.2.1:
[beta]-Amino acids / 1.2.2:
[alpha]-Alkyl substituted acids / 1.2.3:
[alpha]-Alkoxy substituted acids / 1.2.4:
Unsaturated nitriles / 1.2.5:
Alkenes and allyl alcohols / 1.2.6:
[alpha],[beta]-Unsaturated aldehyde reduction / 1.2.7:
Ketone and Imine Reduction / 1.3:
Catalytic hydrogenation of ketones and imines / 1.3.1:
Asymmetric transfer hydrogenation (ATH) catalysts / 1.3.2:
Modified borane reagents / 1.3.3:
Biocatalysts (alcohol dehydrogenases and ketoreductases) / 1.3.4:
Oxidation / 1.4:
Sharpless chiral epoxidation of allyl alcohols / 1.4.1:
Dioxirane catalyzed epoxidation / 1.4.2:
Amines and iminium salts / 1.4.3:
Phase transfer catalysts / 1.4.4:
The Julia-Colonna method (polyleucine oxidation) / 1.4.5:
Organocatalytic [alpha]-hydroxylation of ketones / 1.4.6:
Baeyer-Villiger oxidation / 1.4.7:
Chiral sulfoxides / 1.4.8:
References
Asymmetric Hydrogenation of Alkenes, Enones, Ene-Esters and Ene-Acids / 2:
(S)-2,2[prime]-Bis{[di(4-methoxyphenyl)phosphinyl]oxy}-5,5[prime],6,6[prime],7,7[prime],8,8[prime]-octahydro-1,1[prime]-binaphthyl as a ligand for rhodium-catalyzed asymmetric hydrogenation / Ildiko Gergely ; Csaba Hegedus ; Jozsef Bakos2.1:
Synthesis of (S)-5,5[prime],6,6[prime],7,7[prime],8,8[prime]-Octahydro-1,1[prime]-bi-2-naphthol / 2.1.1:
Synthesis of (S)-2,2[prime]-Bis{[di(4-methoxyphenyl)phosphinyl]oxy}-5,5[prime],6,6[prime],7,7[prime],8,8[prime]-octahydro-1,1[prime]-binaphthyl / 2.1.2:
Asymmetric hydrogenation of Dimethyl itaconate / 2.1.3:
Conclusion
Synthesis and application of phosphinite oxazoline iridium complexes for the asymmetric hydrogenation of alkenes / Frederik Menges ; Andreas Pfaltz2.2:
Synthesis of (4S,5S)-2-(5-Methyl-2-phenyl-4,5-dihydro-oxazol-4-yl)-1,3-diphenyl-propan-2-ol / 2.2.1:
Synthesis of (4S,5S)-O-[1-Benzyl-1-(5-methyl-2-phenyl-4,5-dihydro-oxazol-4-yl)-2-phenyl-ethyl]-diphenylphosphinite / 2.2.2:
Synthesis of (4S,5S)-[([eta superscript 4]-1,5-Cyclooctadiene)-{2-(2-phenyl-5-methyl-4,5-dihydro-oxazol-4-yl)-1,3-diphenyl-2-diphenylphosphinite-propane}iridium(I)]-tetrakis[3,5-bis(trifluoromethyl)phenyl]borate / 2.2.3:
Asymmetric hydrogenation of trans-[alpha]-Methylstilbene / 2.2.4:
Synthesis and application of heterocyclic phosphine oxazoline (HetPHOX) iridium complexes for the asymmetric hydrogenation of alkenes / Pier Giorgio Cozzi2.3:
Synthesis of (4S)-tert-Butyl-2-(thiophene-2-yl)-4,5-dihydrooxazole / 2.3.1:
Synthesis of (4S)-tert-Butyl-2-(3-diphenylphosphino-thiophene-2-yl)-4,5-dihydrooxazole / 2.3.2:
Synthesis of (4S)-[([eta superscript 4]-1,5-Cyclooctadiene)-{4-tert-butyl-2-(3-diphenylphosphino-thiophene-2-yl)-4,5-dihydrooxazole}iridium(I)]-tetrakis [3,5-bis(trifluoromethyl)phenyl]borate / 2.3.3:
(R)-2,2[prime],6,6[prime]-Tetramethoxy-bis[di(3,5-dimethylphenyl)phosphino]-3,3[prime]-bipyridine [(R)-Xyl-P-Phos] as a ligand for rhodium-catalyzed asymmetric hydrogenation of [alpha]-dehydroamino acids / Jing Wu ; Albert S.C. Chan2.3.4:
Synthesis of 3-Bromo-2,6-dimethoxypyridine / 2.4.1:
Synthesis of Bis(3,5-dimethylphenyl)phosphine chloride / 2.4.2:
Synthesis of 3-Bromo-2,6-dimethoxy-4-di(3,5-dimethylphenyl)phosphinopyridine / 2.4.3:
2,2[prime],6,6[prime]-Tetramethoxy-bis[di(3,5-dimethylphenyl)phosphinoyl]-3,3[prime]-bipyridine / 2.4.4:
Optical resolution of ([plus or minus])-6 with (-) or (+)-2,3-0,0[prime]-Dibenzoyltartaric acid monohydrate [(R)-6 or (S)-6)] / 2.4.6:
(R)-2,2[prime],6,6[prime]-Tetramethoxy-bis[di(3,5-dimethylphenyl)phosphino]-3,3[prime]-bipyridine [(R)-Xyl-P-Phos, (R)-1] / 2.4.7:
Preparation of the stock solution of [Rh(R-Xyl-P-Phos)(COD)]BF[subscript 4] / 2.4.8:
A typical procedure for the asymmetric hydrogenation of methyl (Z)-2-Acetamidocinnamate / 2.4.9:
(R,R)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (QuinoXP) as a ligand for rhodium-catalyzed asymmetric hydrogenation of prochiral amino acid and amine derivatives / Tsuneo Imamoto ; Aya Koide2.5:
Synthesis of (R)-tert-Butyl(hydroxymethyl)methylphosphine-borane / 2.5.1:
Synthesis of (R)-Benzoyloxy(tert-butyl)methylphosphine-borane / 2.5.2:
Synthesis of (S)-tert-Butylmethylphosphine-borane / 2.5.3:
(R,R)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (QuinoxP) / 2.5.4:
Asymmetric hydrogenation of Methyl (E)-3-acetylamino-2-butenoate catalyzed by Rh(I)-(R,R)-2,3-Bis(tert-butylmethylphosphino)quinoxaline / 2.5.5:
Rhodium-catalyzed asymmetric hydrogenation of indoles / Ryoichi Kuwano ; Masaya Sawamura2.6:
Synthesis of (R)-2-[(S)-1-(Dimethylamino)ethyl]-1-iodoferrocene / 2.6.1:
Synthesis of (R)-2-[(S)-1-(Diphenylphosphinyl)ethyl]-1-iodoferrocene / 2.6.2:
Synthesis of (R,R)-2,2[prime]-Bis[(S)-1-(diphenylphosphinyl)ethyl]-1,1[Prime]-biferrocene / 2.6.3:
Synthesis of (R,R)-2,2[Prime]-Bis[(S)-1-(diphenylphosphino)ethyl]-1,1[Prime]-biferrocene [abbreviated to (S,S)-(R,R)-PhTRAP] / 2.6.4:
Catalytic asymmetric hydrogenation of N-Acetyl-2-butylindole / 2.6.5:
Catalytic asymmetric hydrogenation of 3-Methyl-N-(p-toluenesulfonyl)indole / 2.6.6:
Asymmetric Reduction of Ketones / 3:
(R,R)-Bis(diphenylphosphino)-1,3-diphenylpropane as a versatile ligand for enantioselective hydrogenations / Natalia Dubrovina ; Armin Borner3.1:
Synthesis of (S,S)-1,3-Diphenylpropane-1,3-diol / 3.1.1:
Synthesis of (S,S)-Methanesulfonyloxy-1,3-diphenylpropane-1,3-diol / 3.1.2:
Synthesis of (R,R)-Bis(diphenylphosphino)-1,3-diphenylpropane / 3.1.3:
Synthesis of both enantiomers of 1-Phenylethanol by reduction of acetophenone with Geotrichum candidum IFO 5767 / Kaoru Nakamura ; Mikio Fujii ; Yoshiteru Ida3.2:
Cultivation of G. candidum IFO 5767 / 3.2.1:
Synthesis of (S)-1-Phenylethanol / 3.2.2:
Synthesis of (R)-1-Phenylethanol / 3.2.3:
Titanocene-catalyzed reduction of ketones in the presence of water. A convenient procedure for the synthesis of alcohols via free-radical chemistry / Antonio Rosales ; Juan M. Cuerva ; J. Enrique Oltra3.3:
Titanocene-catalyzed reduction of Acetophenone in the presence of water / 3.3.1:
Titanocene-catalyzed synthesis of Methyl 4-deuterio-4-phenyl-4-hydroxybutanoate / 3.3.2:
Xyl-tetraPHEMP: a highly efficient biaryl ligand in the [diphosphine RuCl[subscript 2] diamine]-catalyzed hydrogenation of simple aromatic ketones / Paul H. Moran ; Julian P. Henschke ; Antonio Zanotti-Gerosa ; Ian C. Lennon3.4:
Synthesis of Tri(3,5-dimethylphenyl)phosphine oxide / 3.4.1:
Synthesis of Bis(3,5-dimethylphenyl)-(2-iodo-3,5-dimethylphenyl)phosphine oxide / 3.4.2:
Synthesis of rac-4,4[prime],6,6[prime]-Tetramethyl-2,2[prime]-bis[bis(3,5-dimethylphenyl)phosphinoyl]-biphenyl / 3.4.3:
Synthesis of rac-4,4[prime],6,6[prime]-Tetramethyl-2,2[prime]-bis[bis(3,5-dimethylphenyl)phosphino]-biphenyl [abbreviated to (rac)-Xyl-tetraPHEMP] / 3.4.4:
Synthesis of [(R)-N,N-Dimethyl(1-methyl)benzylaminato-C[superscript 2],N]-{rac-4,4[prime],6,6[prime]-tetramethyl-2,2[prime]-bis[bis(3,5-dimethylphenyl)phosphino]-biphenyl}-palladium(II) tetrafluoroborate and separation of the diastereomers / 3.4.5:
Synthesis of (S)-4,4[prime],6,6[prime]-Tetramethyl-2,2[prime]-bis[bis(3,5-dimethylphenyl)phosphino]-biphenyl: [abbreviated to (S)-Xyl-tetraPHEMP) and (R)-4,4[prime],6,6[prime]-Tetramethyl-2,2[prime]-bis[bis(3,5-dimethylphenyl)phosphino]-biphenyl [abbreviated to (R)-Xyl-tetraPHEMP] / 3.4.6:
Synthesis of [(R)-Xyl-tetraPHEMP RuCl[subscript 2] (R,R)-DPEN] and [(S)-Xyl-tetraPHEMP RuCl[subscript 2] (S,S)-DPEN] / 3.4.7:
Reduction of Acetophenone using [(S)-Xyl-tetraPHEMP RuCl[subscript 2] (S,S)-DPEN] as a precatalyst / 3.4.8:
N-Arenesulfonyl- and N-Alkylsulfamoyl-1,2-diphenylethylenediamine ligands for ruthenium-catalyzed asymmetric transfer hydrogenation of activated ketones / Michel (Massoud S.) Stephan ; Barbara Mohar3.5:
Synthesis of N-Arenesulfonyl-1,2-diphenylethylenediamines / 3.5.1:
Preparation of Ru(II)-N-arenesulfonyl-1,2-diphenylethylenediamine complexes / 3.5.2:
Asymmetric transfer hydrogenation of Ethyl benzoylacetate / 3.5.3:
The synthesis and application of BrXuPHOS: a novel monodentate phosphorus ligand for the asymmetric hydrogenation of ketones / Martin Wills ; Yingjian Xu ; Garden Docherty ; Gary Woodward3.6:
Synthesis of (S)-BrXuPHOS / 3.6.1:
Synthesis of (S,S,SS)-BrXuPHOS-Ru-DPEN / 3.6.2:
General procedure of asymmetric hydrogenation of acetophenone / 3.6.3:
Acknowledgement
In Situ formation of ligand and catalyst: application in ruthenium-catalyzed enantioselective reduction of ketones / Jenny Wettergren ; Hans Adolfsson3.7:
Synthesis of (S)-3-Fluoro-1-phenylethanol / 3.7.1:
Synphos and Difluorphos as ligands for ruthenium-catalyzed hydrogenation of alkenes and ketones / Severine Jeulin ; Virginie Ratovelomanana-Vidal ; Jean-Pierre Genet3.8:
Synthesis of [RuCl((S)-SYNPHOS)(p-cymene)]Cl / 3.8.1:
Synthesis of [RuCl((S)-DIFLUORPHOS)(p-cymene)]Cl / 3.8.2:
Synthesis of [RuI((S)-DIFLUORPHOS)(p-cymene)]I / 3.8.3:
Synthesis of [NH[subscript 2]R[subscript 2]] [(RuCl(PP))[subscript 2]([Mu]-Cl)[subscript 3]] PP = SYNPHOS or DIFLUORPHOS and R = Me or Et / 3.8.4:
Synthesis of [NH[subscript 2]Me[subscript 2]][RuCl-(S)-DIFLUORPHOS][subscript 2][[Mu]-Cl][subscript 3] / 3.8.5:
Synthesis of in situ generated [RuBr[subscript 2]((S)-SYNPHOS)] and [RuBr[subscript 2]((S)-DIFLUORPHOS)] / 3.8.6:
An arene ruthenium complex with polymerizable side chains for the synthesis of immobilized catalysts / Estelle Burri ; Silke B. Wendicke ; Kay Severin3.9:
Synthesis of 2-Methyl-cyclohexa-2,5-dienecarboxylic acid 2-(2-methyl-acryloyloxy)-ethyl ester / 3.9.1:
Synthesis of [[eta superscript 6]-(2-Methyl-benzoic acid 2-(2-methyl-acryloyloxy)-ethyl ester)RuCl[subscript 2]][subscript 2] / 3.9.2:
Selective reduction of carbonyl group in [beta], [gamma]-unsaturated [alpha]-alpha-ketoesters by transfer hydrogenation with Ru-(p-cymene) (TsDPEN) / Minjie Guo ; Dao Li ; Yanhui Sun ; Zhaoguo Zhang3.10:
Synthesis of Di-[Mu]-chloro-bis[chloro([eta superscript 6]-1-isopropyl-4-methyl-benzene)ruthenium(II) / 3.10.1:
Synthesis of ([plus or minus])-Monotosylate-1,2-diphenyl-1,2-ethylenediamine / 3.10.2:
Synthesis of Ru complex Ru(p-cymene)(TsDPEN) / 3.10.3:
Ru-TsDPEN catalyzed transfer hydrogenation reaction of [beta],[gamma]-unsaturated-[alpha]-ketoesters / 3.10.4:
Preparation of polymer-supported Ru-TsDPEN catalysts and their use for the enantioselective synthesis of (S)-fluoxetine / Liting Chai ; Yangzhou Li ; Quanrui Wang3.11:
Synthesis of the supported ligand 9 / 3.11.1:
Synthesis of ligand 17 / 3.11.2:
General procedure for asymmetric transfer hydrogenation / 3.11.3:
Preparation of (S)-Fluoxetine hydrochloride / 3.11.4:
Polymer-supported chiral sulfonamide-catalyzed reduction of [beta]-keto nitriles: a practical synthesis of (R)-Fluoxetine / Guang-yin Wang ; Gang Zhao3.12:
Synthesis of (R)-3-Amino-1-phenyl-propan-1-ol / 3.12.1:
Synthesis of (R)-ethyl 3-hydroxy-3-phenylpropylcarbamate / 3.12.2:
Synthesis of (R)-3-(Methylamino)-1-phenylpropan-1-ol / 3.12.3:
Synthesis of (R)-Fluoxetine / 3.12.4:
Imine Reduction and Reductive Amination / 4:
Metal-free reduction of imines: enantioselective Bronsted acid-catalyzed transfer hydrogenation using chiral BINOL-phosphates as catalysts / Magnus Rueping ; Erli Sugiono ; Cengiz Azap ; Thomas Theissmann4.1:
Synthesis of (R)-2,2[prime]-Bis-methoxymethoxy-[1,1[prime]] binaphthalene (MOM-BINOL) / 4.1.1:
Synthesis of (R)-3,3[prime]-Diiodo-2,2[prime]-bis(methoxymethoxy)-1,1[prime]-binaphthalene / 4.1.2:
Synthesis of 3,3[prime]-Bis-(3,5[prime]-bis-trifluoromethyl-phenyl)-2,2[prime]-bismethoxymethoxy [1,1[prime]-binaphthalene] / 4.1.3:
Synthesis of (R)-3,3[prime]-[3,5-Bis(trifluoromethyl)phenyl]-1,1[prime]-binaphthylphosphate / 4.1.4:
General procedure for the transfer hydrogenation of ketimines / 4.1.5:
Synthesis of [1-(2,4-Dimethyl-phenyl)-ethyl]-(4-methoxy-phenyl)-amine / 4.1.6:
Metal-free Bronsted acid-catalyzed transfer hydrogenation: enantioselective synthesis of tetrahydroquinolines / Andrey P. Antonchick4.2:
General procedure for the transfer hydrogenation of quinolines / 4.2.1:
Synthesis of 7-Chloro-4-phenyl-1,2,3,4-tetrahydroquinoline / 4.2.2:
Synthesis of (S)-2-Phenyl-1,2,3,4-tetrahydroquinoline / 4.2.3:
Synthesis of (R)-2-(2-(Benzo[1,3]dioxol-5-yl)ethyl)-1,2.3,4-tetrahydro-quinoline / 4.2.4:
A highly stereoselective synthesis of 3[alpha]-Amino-23,24-bisnor-5[alpha]-cholane via reductive amination / Sharaf Nawaz Khan ; Nam Ju Cho ; Hong-Seok Kim4.3:
Synthesis of Tris[(2-ethylhexanoyl)oxy]borohydride / 4.3.1:
Synthesis of 3[alpha]-Acetamino-23,24-bisnor-5[alpha]-cholane / 4.3.2:
Synthesis of 3[alpha]-N-1-[N(3-[4-Aminobutyl])-1,3-diaminopropane]-23,24-bisnor-5[alpha]-cholane / 4.3.3:
Acknowledgements
Oxidation of Primary and Secondary Alcohols / 5:
Copper(Il) catalyzed oxidation of primary alcohols to aldehydes with atmospheric oxygen / Suribabu Jammi ; Tharmalingan Punniyamurthy5.1:
Synthesis of copper(II) complex 1 / 5.1.1:
Typical procedure for the oxidation of primary alcohols to aldehydes / 5.1.2:
Solvent-free dehydrogenation of secondary alcohols in the absence of hydrogen abstractors using Robinson's catalyst / G.B.W.L Ligthart ; R.H. Meijer ; J. v. Buijtenen ; J. Meuldijk ; J.A.J.M. Vekemans ; L.A. Hulshof5.2:
Dehydrogenation of 2-Octanol using Ru(OCOCF[subscript 3])[subscript 2](CO)(PPh[subscript 3])[subscript 2] as a catalyst / 5.2.1:
2-Iodoxybenzoic acid (IBX)/n-Bu[subscript 4]NBr/CH[subscript 2]Cl[subscript 2]-H[subscript 2]O: a mild system for the selective oxidation of secondary alcohols / Krisada Kittigowittana ; Manat Pohmakotr ; Vichai Reutrakul ; Chutima Kuhakarn5.3:
Synthesis of 1-Hydroxy-5-decanone / 5.3.1:
Hydroxylation, Epoxidation and Related Reactions / 6:
Proline-catalyzed [alpha]-aminoxylation of aldehydes and ketones / Yujiro Hayashi ; Mitsuru Shoji6.1:
Synthesis of (R)-2-Anilinoxypropanol / 6.1.1:
Synthesis of (R)-7-Anilinoxy-1,4-dioxaspiro[4.5]decan-8-one / 6.1.2:
Ru/Silia Cat TEMPO-mediated oxidation of alkenes to [alpha]-hydroxyacids / Rosaria Ciriminna ; Mario Pagliaro6.2:
Synthesis of Silia Cat TEMPO / 6.2.1:
Synthesis of 2-(4-Chlorophenyl)-1,2-propanediol / 6.2.2:
Synthesis of 2-(4-Chlorophenyl)-1,2-hydroxypropanoic acid / 6.2.3:
Catalytic enantioselective epoxidation of trans-disubstituted and trisubstituted alkenes with arabinose-derived ulose / Tony K. M. Shing ; Gulice Y.C. Leung ; To Luk6.3:
Synthesis of 2[prime],3[prime]-Diisobutyl acetal / 6.3.1:
Synthesis of ulose / 6.3.2:
Asymmetric epoxidation of trans-[alpha]-Methylstilbene using ulose as catalyst at 0 [degree]C / 6.3.3:
VO(acac)[subscript 2]/TBHP catalyzed epoxidation of 2-(2-Alkenyl)phenols. highly regio- and diastereoselective oxidative cyclisation to 2,3-Dihydrobenzofuranols and 3-Chromanols / Alessandra Lattanzi ; Arrigo Scettri6.4:
VO(acac)[subscript 2]/TBHP catalyzed epoxidation of 2-(3,7-Dimethyl-octa-2,6-dienyl)-phenol / 6.4.1:
VO(acac)[subscript 2]/TBHP/TFA catalyzed oxidative cyclization of 2-(3,7-Dimethyl-octa-2,6-dienyl)-phenol / 6.4.2:
An Oxalolidinone ketone catalyst for the asymmetric epoxidation of cis-olefins / David Goeddel ; Yian Shi6.5:
Amadori rearrangement to give 1-Dibenzylamino-1-deoxy-D-fructose / 6.5.1:
Acetal protection of 1-Dibenzylamino-1-deoxy-D-fructose / 6.5.2:
Hydrogenation of the Dibenzylamine / 6.5.3:
Phosgene cyclization of aminoalcohol / 6.5.4:
Alcohol oxidation / 6.5.5:
Synthesis of ketone 2 / 6.5.6:
Asymmetric epoxidation of cis-[beta]-Methylstyrene / 6.5.7:
[alpha]-Fluorotropinone immobilised on silica: a new stereoselective heterogeneous catalyst for epoxidation of alkenes with oxone / Giovanni Sartori ; Alan Armstrong ; Raimondo Maggi ; Alessandro Mazzacani ; Raffaella Sartorio ; France Bigi ; Belen Dominguez-Fernandez6.6:
Synthesis of silica KG-60-supported enantiomerically enriched [alpha]-Fluorotropinone / 6.6.1:
Synthesis of enantiomerically enriched epoxides / 6.6.2:
Asymmetric epoxidation catalyzed by novel azacrown ether-type chiral quaternary ammonium salts under phase-transfer catalytic conditions / Kazushige Hori ; Keita Tani ; Yasuo Tohda6.7:
Synthesis of precursor of the azacrown ether / 6.7.1:
Synthesis of the azacrown ether / 6.7.2:
Synthesis of the azacrown ether-type quaternary ammonium salt / 6.7.3:
Asymmetric epoxidation of (E)-Chalcone catalyzed by the azacrown ether-type quaternary ammonium salt as chiral PTC / 6.7.4:
Enantioselective epoxidation of olefins using phase transfer conditions and a chiral [azepinium][TRISPHAT] salt as catalyst / Jerome Vachon ; Celine Perollier ; Alexandre Martinez ; Jerome Lacour6.8:
Enantioselective epoxidation of 1-Phenyl-3,4-dihydronaphthalene / 6.8.1:
Catalytic asymmetric epoxidation of [alpha],[beta]-unsaturated esters promoted by a Yttrium-biphenyldiol complex / Masakatsu Shibasaki ; Hiroyuki Kakei ; Shigeki Matsunaga6.9:
Synthesis of (aS,R)-6,6[prime]-[(Propylene)dioxy]biphenyl-2,2[prime]-diol / 6.9.1:
Synthesis of (aS,R)-2,2-[Oxybis(ethylene)dioxy]-6,6[prime]-[(propylene)dioxy]biphenyl / 6.9.2:
Synthesis of (S)-6,6[prime]-[Oxybis(ethylene)dioxy]biphenyl-2,2[prime]-diol / 6.9.3:
Enantiomeric enrichment of (S)-6,6[prime]-[Oxybis(ethylene)dioxy]biphenyl-2,2[prime]-diol / 6.9.4:
Catalytic asymmetric epoxidation of [alpha],[beta]-unsaturated esters / 6.9.5:
Catalytic enantioselective epoxidation of [alpha],[beta]-enones with a binol-zinc-complex / Ana Minatti ; Karl Heinz Dotz6.10:
Synthesis of (E)-(2S,3R)-Phenyl-(3-phenyloxiran-2-yl)methanone / 6.10.1:
Asymmetric epoxidation of Phenyl-2-(3[prime]-pyridylvinyl)sulfone using polyleucine hydrogen peroxide gel / Mike R. Pitts6.11:
Preparation of polyleucine-hydrogen peroxide gel / 6.11.1:
Synthesis of Phenyl-2-(3[prime]-pyridylvinyl) sulfone (2) / 6.11.2:
Oxidation of Ketones to Lactones or Enones / 7:
Synthesis of 2-(Phosphinophenyl)pyrindine ligand and its application to palladium-catalyzed asymmetric Baeyer-Villiger oxidation of prochiral cyclobutanones / Katsuji Ito ; Tsutomu Katsuki7.1:
Synthesis of (7R)-2-(2-Hydroxyphenyl)-7-isopropyl-6,7-dihydro-5H-1-pyrindine / 7.1.1:
2-[2-(Diphenylphosphinoyl)phenyl]-7-isopropyl-6,7-dihydro-5H-1-pyrindine / 7.1.2:
2-[2-(Diphenylphosphanyl)phenyl]-7-isopropyl-6,7-dihydro-5H-1-pyrindine / 7.1.3:
Asymmetric Baeyer-Villiger oxidation of 3-Phenylcyclobutanone / 7.1.4:
(D)-Codeinone from (D)-Dihydrocodeinone via the use of modified o-iodoxybenzoic acid (IBX). A convenient oxidation of ketones to enones / Paul Mather7.2:
Synthesis of IBX / 7.2.1:
Synthesis of codeinone / 7.2.2:
Oxidative C-C Coupling / 8:
Enantioselective oxidative coupling of 2-Naphthols catalyzed by a novel chiral vanadium complex / Nan-Sheng Xie ; Quan-Zhong Liu ; Zhi-Bin Luo ; Liu-Zhu Gong ; Ai-Qiao Mi ; Yao-Zhong Jiang8.1:
Synthesis of 3,3-Diformyl-2,2[prime]-biphenol / 8.1.1:
Synthesis of chiral vanadium complexes / 8.1.2:
Catalytic oxidative coupling of 7-Alkoxy-1-naphthols by chiral vanadium complexes / 8.1.3:
Reference
Catalytic oxidative cross-coupling reaction of 2-Naphthol derivatives / Shigeki Habaue ; Tomohisa Temma8.2:
Synthesis of Methyl 2,2[prime]-dihydroxy-1,1[prime]-binaphthalene-3-carboxylate / 8.2.1:
Oxidative coupling of benzenes with [alpha],[beta]-unsaturated aldehydes by Pd(OAc)[subscript 2]/ HPMoV/ O[subscript 2] system / Tomoyuki Yamada ; Satoshi Sakaguchi ; Yasutaka Ishii8.3:
Synthesis of Cinnamaldehyde / 8.3.1:
Oxidation of Sulfides and Sulfoxides / 9:
The first example of direct oxidation of sulfides to sulfones by an osmate-molecular oxygen system / Boyapati M. Choudary ; Chinta Reddy ; V. Reddy ; Billakanti V. Prakash ; Mannepalli L. Kantam ; B. Sreedhar9.1:
Synthesis of osmate exchanged Mg-Al layered double hydroxides (LDH-OsO[subscript 4]) / 9.1.1:
Synthesis of Methyl phenyl sulfone or Methylsulfonylbenzene / 9.1.2:
Selective oxidation of sulfides to sulfoxides and sulfones using hydrogen peroxide in the presence of zirconium tetrachloride / Kiumar Bahrami9.2:
Oxidation of Benzyl 4-bromobenzyl sulfide to Benzyl 4-bromobenzyl sulfoxide using H[subscript 2]O[subscript 2] in the presence of zirconium tetrachloride / 9.2.1:
Oxidation of Benzyl 4-bromobenzyl sulfide to Benzyl 4-bromobenzyl sulfone using H[subscript 2]O[subscript 2] in the presence of zirconium tetrachloride / 9.2.2:
WO[subscript 3]-30 % H[subscript 2]O[subscript 2]-cinchona alkaloids: a new heterogeneous catalytic system for asymmetric oxidation and kinetic resolution of racemic sulfoxides / Vinay V. Thakur ; A. Sudalai9.3:
Synthesis of (R)-2-[[[3-Methyl-4-(2,2,2-trifluoroethoxy)-2-pyridyl]methyl]sulfinyl]-1H-benzimadazole {(R)-(+)-Lansoprazole} / 9.3.1:
Synthesis of (R)-(+)-Phenyl benzyl sulfoxide / 9.3.2:
Benzyl-4,6-O-isopropylidene-[alpha]-(D)-glucopyranoside, 2-deoxy-2-[[(2-hydroxy-3,5-di-tert-butylphenyl)methylene]amino] as a ligand for vanadium-catalyzed asymmetric oxidation of sulfides / Raffaella Del Litto ; Guiseppina Roviello ; Francesco Ruffo9.4:
Synthesis of Benzyl-4,6-O-isopropylidene-[alpha]-D-glucopyranoside, 2-deoxy-2-[[(2-hydroxy-3,5-di-tert-butylphenyl)methylene]imine] / 9.4.1:
Oxidation of Thioanisole / 9.4.2:
Asymmetric sulfoxidation of aryl methyl sulfides with hydrogen peroxide in water / Alessando Scarso ; Giorgio Strukul9.5:
Synthesis of complex (R)-BINAP)PtCl[subscript 2] / 9.5.1:
Synthesis of complex [((R)-BINAP)Pt((OH)][subscript 2](BF[subscript 4])[subscript 2] / 9.5.2:
Stereoselective catalytic oxidation of aryl methyl sulfides / 9.5.3:
Index
Series Preface
Preface to Volume 5
Abbreviations
3.

図書

図書
Betty Pace
出版情報: London : Imperial College Press , Hackensack, N.J. : Distributed by World Scientific Pub., c2007  xxxv, 357 p. ; 27 cm
所蔵情報: loading…
4.

図書

図書
Edmond de Hoffmann, Vincent Stroobant
出版情報: Chichester, U.K. : J. Wiley, c2007  xii, 489 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction
Principles
Diagram of a Mass Spectrometer
History
Ion Free Path
Ion Sources / 1:
Electron Ionization / 1.1:
Chemical Ionization / 1.2:
Proton transfer / 1.2.1:
Adduct formation / 1.2.2:
Charge-transfer chemical ionization / 1.2.3:
Reagent gas / 1.2.4:
Negative ion formation / 1.2.5:
Desorption chemical ionization / 1.2.6:
Field Ionization / 1.3:
Fast Atom Bombardment and Liquid Secondary Ion Mass Spectrometry / 1.4:
Field Desorption / 1.5:
Plasma Desorption / 1.6:
Laser Desorption / 1.7:
Matrix-Assisted Laser Desorption Ionization / 1.8:
Principle of MALDI / 1.8.1:
Practical considerations / 1.8.2:
Fragmentations / 1.8.3:
Atmospheric pressure matrix-assisted laser desorption ionization / 1.8.4:
Thermospray / 1.9:
Atmospheric Pressure Ionization / 1.10:
Electrospray / 1.11:
Multiply charged ions / 1.11.1:
Electrochemistry and electric field as origins of multiply charged ions / 1.11.2:
Sensitivity to concentration / 1.11.3:
Limitation of ion current from the source by the electrochemical process / 1.11.4:
Atmospheric Pressure Chemical Ionization / 1.11.5:
Atmospheric Pressure Photoionization / 1.13:
Atmospheric Pressure Secondary Ion Mass Spectrometry / 1.14:
Desorption electrospray ionization / 1.14.1:
Direct analysis in real time / 1.14.2:
Inorganic Ionization Sources / 1.15:
Thermal ionization source / 1.15.1:
Spark source / 1.15.2:
Glow discharge source / 1.15.3:
Inductively coupled plasma source / 1.15.4:
Gas-Phase Ion-Molecule Reactions / 1.15.5:
Formation and Fragmentation of Ions: Basic Rules / 1.17:
Electron ionization and photoionization under vacuum / 1.17.1:
Ionization at low pressure or at atmospheric pressure / 1.17.2:
Formation of aggregates or clusters / 1.17.3:
Reactions at the interface between source and analyser / 1.17.6:
Mass Analysers / 2:
Quadrupole Analysers / 2.1:
Description / 2.1.1:
Equations of motion / 2.1.2:
Ion guide and collision cell / 2.1.3:
Spectrometers with several quadrupoles in tandem / 2.1.4:
Ion Trap Analysers / 2.2:
The 3D ion trap / 2.2.1:
The 2D ion trap / 2.2.2:
The Electrostatic Trap or 'Orbitrap' / 2.3:
Time-of-Flight Analysers / 2.4:
Linear time-of-flight mass spectrometer / 2.4.1:
Delayed pulsed extraction / 2.4.2:
Reflectrons / 2.4.3:
Tandem mass spectrometry with time-of-flight analyser / 2.4.4:
Orthogonal acceleration time-of-flight instruments / 2.4.5:
Magnetic and Electromagnetic Analysers / 2.5:
Action of the magnetic field / 2.5.1:
Electrostatic field / 2.5.2:
Dispersion and resolution / 2.5.3:
Tandem mass spectrometry in electromagnetic analysers / 2.5.4:
Ion Cyclotron Resonance and Fourier Transform Mass Spectrometry / 2.6:
General principle / 2.6.1:
Ion cyclotron resonance / 2.6.2:
Fourier transform mass spectrometry / 2.6.3:
MS[superscript n] in ICR/FTMS instruments / 2.6.4:
Hybrid Instruments / 2.7:
Electromagnetic analysers coupled to quadrupoles or ion trap / 2.7.1:
Ion trap analyser combined with time-of-flight or ion cyclotron resonance / 2.7.2:
Hybrids including time-of-flight with orthogonal acceleration / 2.7.3:
Detectors and Computers / 3:
Detectors / 3.1:
Photographic plate / 3.1.1:
Faraday cup / 3.1.2:
Electron multipliers / 3.1.3:
Electro-optical ion detectors / 3.1.4:
Computers / 3.2:
Functions / 3.2.1:
Instrumentation / 3.2.2:
Data acquisition / 3.2.3:
Data conversion / 3.2.4:
Data reduction / 3.2.5:
Library search / 3.2.6:
Tandem Mass Spectrometry / 4:
Tandem Mass Spectrometry in Space or in Time / 4.1:
Tandem Mass Spectrometry Scan Modes / 4.2:
Collision-Activated Decomposition or Collision-Induced Dissociation / 4.3:
Collision energy conversion to internal energy / 4.3.1:
High-energy collision (keV) / 4.3.2:
Low-energy collision (between 1 and 100 eV) / 4.3.3:
Other Methods of Ion Activation / 4.4:
Reactions Studied in MS/MS / 4.5:
Tandem Mass Spectrometry Applications / 4.6:
Structure elucidation / 4.6.1:
Selective detection of target compound class / 4.6.2:
Ion-molecule reaction / 4.6.3:
The kinetic method / 4.6.4:
Mass Spectrometry/Chromatography Coupling / 5:
Elution Chromatography Coupling Techniques / 5.1:
Gas chromatography/mass spectrometry / 5.1.1:
Liquid chromatography/mass spectrometry / 5.1.2:
Capillary electrophoresis/mass spectrometry / 5.1.3:
Chromatography Data Acquisition Modes / 5.2:
Data Recording and Treatment / 5.3:
Data recording / 5.3.1:
Instrument control and treatment of results / 5.3.2:
Analytical Information / 6:
Mass Spectrometry Spectral Collections / 6.1:
High Resolution / 6.2:
Information at different resolving powers / 6.2.1:
Determination of the elemental composition / 6.2.2:
Isotopic Abundances / 6.3:
Low-mass Fragments and Lost Neutrals / 6.4:
Number of Rings or Unsaturations / 6.5:
Mass and Electron Parities, Closed-shell Ions and Open-shell Ions / 6.6:
Electron parity / 6.6.1:
Mass parity / 6.6.2:
Relationship between mass and electron parity / 6.6.3:
Quantitative Data / 6.7:
Specificity / 6.7.1:
Sensitivity and detection limit / 6.7.2:
External standard method / 6.7.3:
Sources of error / 6.7.4:
Internal standard method / 6.7.5:
Isotopic dilution method / 6.7.6:
Fragmentation Reactions / 7:
Electron Ionization and Fragmentation Rates / 7.1:
Quasi-Equilibrium and RRKM Theory / 7.2:
Ionization and Appearance Energies / 7.3:
Fragmentation Reactions of Positive Ions / 7.4:
Fragmentation of odd-electron cations or radical cations (OE[superscript [middle dot]+]) / 7.4.1:
Fragmentation of cations with an even number of electrons (EE[superscript +]) / 7.4.2:
Fragmentations obeying the parity rule / 7.4.3:
Fragmentations not obeying the parity rule / 7.4.4:
Fragmentation Reactions of Negative Ions / 7.5:
Fragmentation mechanisms of even electron anions (EE[superscript -]) / 7.5.1:
Fragmentation mechanisms of radical anions (OE[superscript [middle dot]-]) / 7.5.2:
Charge Remote Fragmentation / 7.6:
Spectrum Interpretation / 7.7:
Typical ions / 7.7.1:
Presence of the molecular ion / 7.7.2:
Typical neutrals / 7.7.3:
A few examples of the interpretation of mass spectra / 7.7.4:
Analysis of Biomolecules / 8:
Biomolecules and Mass Spectrometry / 8.1:
Proteins and Peptides / 8.2:
ESI and MALDI / 8.2.1:
Structure and sequence determination using fragmentation / 8.2.2:
Applications / 8.2.3:
Oligonucleotides / 8.3:
Mass spectra of oligonucleotides / 8.3.1:
Applications of mass spectrometry to oligonucleotides / 8.3.2:
Fragmentation of oligonucleotides / 8.3.3:
Characterization of modified oligonucleotides / 8.3.4:
Oligosaccharides / 8.4:
Mass spectra of oligosaccharides / 8.4.1:
Fragmentation of oligosaccharides / 8.4.2:
Degradation of oligosaccharides coupled with mass spectrometry / 8.4.3:
Lipids / 8.5:
Fatty acids / 8.5.1:
Acylglycerols / 8.5.2:
Bile acids / 8.5.3:
Metabolomics / 8.6:
Mass spectrometry in metabolomics / 8.6.1:
Exercises / 8.6.2:
Questions
Answers
Appendices
Nomenclature
Units
Definitions
Analysers
Detection
Ionization
Ion types
Fragmentation
Acronyms and abbreviations
Fundamental Physical Constants
Table of Isotopes in Ascending Mass Order / 4A:
Table of Isotopes in Alphabetical Order / 4B:
Isotopic Abundances (in %) for Various Elemental Compositions CHON
Gas-Phase Ion Thermochemical Data of Molecules
Gas-Phase Ion Thermochemical Data of Radicals
Literature on Mass Spectrometry
Mass Spectrometry on Internet
Index
Preface
Introduction
Principles
5.

図書

図書
Seymour Lipschutz, Marc Lars Lipson
出版情報: New York : McGraw-Hill, c2007  xi, 474 p. ; 28 cm
シリーズ名: Schaum's outline series
所蔵情報: loading…
目次情報: 続きを見る
Set Theory / Chapter 1:
Relations / Chapter 2:
Functions and Algorithms / Chapter 3:
Logic and Propositional Calculus / Chapter 4:
Techniques of Counting / Chapter 5:
Advanced Counting Techniques, Recursion / Chapter 6:
Probability / Chapter 7:
Graph Theory / Chapter 8:
Directed Graphs / Chapter 9:
Binary Trees / Chapter 10:
Properties of the Integers / Chapter 11:
Languages, Automata, Grammars / Chapter 12:
Finite State Machines and Turing Machines / Chapter 13:
Ordered Sets and Lattices / Chapter 14:
Boolean Algebra / Chapter 15:
Vectors and Matrices / Appendix A:
Algebraic Systems / Appendix B:
Index
Set Theory / Chapter 1:
Relations / Chapter 2:
Functions and Algorithms / Chapter 3:
6.

図書

図書
edited by Satoshi Kawata, Vladimir M. Shalaev
出版情報: Amsterdam ; Tokyo : Elsevier, 2007  xiv, 323 p. ; 24 cm
シリーズ名: Advances in nano-optics and nano-photonics
所蔵情報: loading…
目次情報: 続きを見る
List of Contributors
Preface
Plasmonic materials for surface-enhanced and tip-enhanced Raman spectroscopy / M.A. Young ; J. A. Dieringer ; R.P. Van DuyneChapter 1:
Introduction / [Section] 1:
Nanosphere lithography / [Section] 2:
Size- and shape-tunable localized surface plasmon resonance spectra / [Section] 3:
Fundamentals of localized surface plasmon resonance spectroscopy / [Section] 4:
Electrodynamic calculations / [Section] 5:
The distance dependence of the localized surface plasmon resonance / [Section] 6:
Surface-enhanced Raman spectroscopy / [Section] 7:
Wavelength-scanned surface-enhanced Raman excitation spectroscopy / [Section] 8:
SERS enhancement factor calculation / [Section] 9:
SERS distance dependence by atomic layer deposition / [Section] 10:
2D correlation analysis of SMSERS and single nanoparticle SERS data / [Section] 11:
Tip-enhanced Raman scattering / [Section] 12:
TERS force dependence using AFM / [Section] 13:
Conclusion and outlook / [Section] 14:
Acknowledgments
References
Towards single molecule sensitivity in surface-enhanced Raman scattering / M. Futamata ; Y. MaruyamaChapter 2:
Experiments and numerical analysis
Experimental set up for SERS measurement / 2.1:
Ag nanoparticles preparation / 2.1.1:
Numerical analysis of the local electric field and elastic scattering spectra for metal nanostructures / 2.2:
Results and discussion
Hot particles in SERS / 3.1:
Local field evaluation on the Ag nanoparticles / 3.2:
Origin of the blinking / 3.3:
Blinking at room temperature / 3.3.1:
Blinking at low temperature / 3.3.2:
Critical importance of the junction for SMS-SERS / 3.4:
Elastic scattering experiments / 3.4.1:
Numerical simulations of elastic scattering spectra / 3.4.2:
Emission spectra / 3.5:
Summary
Acknowledgment
Near-field effects in tip-enhanced Raman scattering / Y. Inouye ; P. Verma ; T. Ichimura ; S. KawataChapter 3:
Tip enhancement of Raman scattering
Metallic probe as a nanolight source
Enhancement mechanism for Rhodamine 6G
RRS and SERRS spectra of R6G
TERS spectra of R6G
Near-field Raman scattering from Carbon-60
The gap-mode enhancement / 4.1:
Tip-force effect on C60 / 4.2:
Tip-enhanced nonlinear optical spectroscopy
Photon confinement due to nonlinear optical effect / 5.1:
Tip-enhanced coherent anti-Stokes Raman scattering / 5.2:
Experimental system / 5.3:
Tip-enhanced CARS images of DNA clusters / 5.4:
Conclusion
Use of tip-enhanced vibrational spectroscopy for analytical applications in chemistry, biology, and materials science / T. Schmid ; B.-S. Yeo ; W. Zhang ; R. ZenobiChapter 4:
Setups for tip-enhanced vibrational spectroscopy
Tip-enhanced Raman spectroscopy (TERS)
Tip-enhanced coherent anti-Stokes Raman scattering (TE-CARS)
Scattering scanning near-field optical microscopy (s-SNOM) / 2.3:
Tip fabrication / 2.4:
Enhancement factors and lateral resolution
TERS contrasts and enhancement factors
Comparison of TERS contrasts and enhancement factors
Lateral resolution in apertureless near-field microscopy
Chemical applications
Dyes
Catalysis
Microfluidics and chromatography / 4.3:
Biological applications
Biopolymers
Viruses and biological tissues
Applications in materials science
Nanotubes / 6.1:
Material-specific mapping / 6.2:
Semiconductors / 6.3:
SERS substrates / 6.4:
Conclusions and outlook
Tip-enhanced optical spectroscopy of single-walled carbon nanotubes / A. Hartschuh ; H. Qian ; A.J. Meixner ; N. Anderson ; L. NovotnyChapter 5:
Experimental setup
Single-walled carbon nanotubes
Near-field Raman spectroscopy of SWCNTs
Near-field photoluminescence spectroscopy of SWCNTs
Discussion of the signal enhancement and the image contrast
Scanning nano-Raman spectroscopy of silicon and other semiconducting materials / D. Mehtani ; N. Lee ; R.D. Hartschuh ; A. Kisliuk ; M.D. Foster ; A.P. Sokolov ; J.F. MaguireChapter 6:
Side-illumination geometry and preparation of tips
Apparent enhancement and its localization
Tip enhancement and contrast
Improving contrast for silicon
Optical properties of the apertureless tips
Summary and outlook
Near-field optical structuring and manipulation based on local field enhancement in the vicinity of metal nano structures / R. BachelotChapter 7:
Introduction: context and motivation
General consideration on the optics of metal nanostructures
Tip-enhanced optical lithography (TEOL)
TEOL on inorganic material
TEOL on photopolymer
NFOL based on localized 3-D surface plasmons
Mask-based surface plasmon lithography
Apertureless near-field microscopy of second-harmonic generation / A. V. ZayatsChapter 8:
Second-harmonic generation imaging with SNOM
SHG in the presence of a probe tip
SHG from a probe tip: a localized light source
Tip-enhanced surface SHG
Self-consistent model of second-harmonic ASNOM
Second-harmonic ASNOM: experimental realisation
SHG enhancement at conical objects
SHG from a metal tip apex
SHG ASNOM applications for functional materials characterisation
Resonant optical antennas and single emitters / B. Hecht ; P. Muhlschlegel ; J.N. Farahani ; H.-J. Eisler ; D.W. PohlChapter 9:
Antenna basics
Field enhancement in resonant dipole antennas
Emission of radiation from dipole antennas
Antenna equivalent circuit / 2.2.1:
Antenna impedance / 2.2.2:
True current distribution in a thin dipole antenna / 2.2.3:
Antennas for light
Light confinement by resonant dipole antennas
Nonplasmonic optical antenna / 3.2.1:
Plasmonic optical antenna / 3.2.2:
Light confinement by a resonant bowtie antenna
Fabrication and characterization of resonant optical antennas
Single dipole emitters coupled to optical antennas
Properties of single dipole emitters near metal nano structures
Experimental realization: creating an antenna-based super-emitter
Author index
Subject index
List of Contributors
Preface
Plasmonic materials for surface-enhanced and tip-enhanced Raman spectroscopy / M.A. Young ; J. A. Dieringer ; R.P. Van DuyneChapter 1:
7.

図書

図書
Ehud Gazit
出版情報: London : Imperial College Press , Singapore : Distributed by World Scientific, c2007  xiii, 183 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction: Nanobiotechnology and Bionanotechnology / 1:
Classical Biotechnology: Industrial Production Using Biological Systems / 1.1:
Modern Biotechnology: From Industrial Processes to Novel Therapeutics / 1.2:
Modern Biotechnology: Immunological, Enzymatic, and Nucleic Acids-Based Technology / 1.3:
The Interface Between Nanotechnological and Biotechnology: Bionanotechnology / 1.4:
Supramolecular (Bio)Chemistry: The Theoretical Basis for Self-Assembly / 1.5:
The Next Steps for Self-Association at the Nano-Scale / 1.6:
Biology in Nanotechnology and Nano-Sciences in Biotechnology / 1.7:
The Combination of Bionanotechnology and Nanobiotechnology / 1.8:
Nanobionics and Bio-Inspired Nanotechnology / 1.9:
A Brief Introduction to Nanotechnology / 2:
The Emergence of Nanotechnology: "There's Plenty of Room at the Bottom" / 2.1:
Coining the Term "Nanotechnology" and Emergence of the Nanotechnology Concept / 2.2:
Manipulating Molecules: The Scanning Probe Microscopes / 2.3:
Carbon Fullerene: A New Form of Carbon / 2.4:
Carbon Nanotubes: Key Building Blocks for Future Nanotechnological Applications / 2.5:
Non-Carbon Nanotubes and Fullerene-Like Material: The Inorganic Nanomaterials / 2.6:
Quantum Dots and Other Nano-Particles / 2.7:
Nanowires, Nanorods, and Other Nanomaterials / 2.8:
Magnetic Nanoparticles / 2.9:
Natural Biological Assembly at the Nano-Scale / 3:
The Process of Self-Assembly and Self-Organization in Biology / 3.1:
Organization of Bacterial S-Layers / 3.2:
Self-Organization of Viruses / 3.3:
Self-Organization of Phospholipids Membranes / 3.4:
Fibrillar Cytoskeleton Assemblies / 3.5:
Nucleic Acids: The Genetic Information Media and a Template for Nanotechnological Applications / 3.6:
Oligosaccharides and Polysaccharides: Another Class of Biological Polymers / 3.7:
Amyloid Fibrils as Self-Assembled Nano-Scale Bio-Assemblies / 3.8:
Silk: Natural Fibrillar Supramolecular Protein Assembly / 3.9:
Ribosome: The Protein Assembly Line Instrument / 3.10:
Other Complex Machines in the Genetic Code Expression / 3.11:
Protein Quality-Control Machinery: The Proteosome / 3.12:
Biological Nano-Motors: Kinesin and Dynein / 3.13:
Other Nano-Motors: Flagella and Cilia / 3.14:
Ion Channels: Nano-Pores of High Specificity / 3.15:
Nanometric Biological Assemblies: Molecular and Chemical Basis for Interaction / 4:
Emergence of Biological Activity Through Self-Assembly / 4.1:
Molecular Recognition and Chemical Affinity / 4.2:
Affinity and Specificity of Biological Interactions / 4.3:
The Relation Between Thermodynamics and Kinetics of Dissociation / 4.4:
The Chemical Basis for Molecular Recognition and Specific Binding / 4.5:
The Formation Specific Complexes by an Increase in Entropy / 4.6:
Molecular Recognition and the Formation of Biological Structures / 5:
Antibodies as the Molecular Sensors of Recognition / 5.1:
Selection of Antibodies and Equivalent Systems in the Test Tube / 5.2:
Recognition Between Nucleic Acids by Proteins / 5.3:
Interaction Between Receptors and Ligands / 5.4:
Molecular Recognition Between Nucleic Acids / 5.5:
Self-Assembly of Biological and Bio-Inspired Nano-Materials / 6:
Formation of DNA-Based Materials / 6.1:
Peptide-Based Nanomaterials / 6.2:
The First Peptide Nanotubes / 6.3:
Amphiphile and Surfactant-Like Peptide Building-Blocks / 6.4:
Charge Complementary as a Driven Force for Self-Assembly / 6.5:
Conjugation of Peptides for Self-Assembly / 6.6:
Aromatic Interactions for the Formation of Nanostructures / 6.7:
The Formation of Aromatic Dipeptide Nanotubes (ADNT) / 6.8:
The Formation of Spherical Nanostructures by Short Peptides / 6.9:
Peptide Nucleic Acid (PNA) / 6.10:
Application of Biological Assemblies in Nanotechnology / 7:
The Use of S-Layer for Nanolithography / 7.1:
The Use of DNA for Fabrication of Conductive Nanowires / 7.2:
Amyloid Fibrils as Templates for Nanowires Fabrication / 7.3:
Metallization of Actin Filaments by Chemical Modification / 7.4:
The Use of Aromatic Peptide Nanotubes / 7.5:
Bacteriophages as Novel Biomaterials / 7.6:
The Use of Peptide Template for Biomineralization / 7.7:
Production of Inorganic Composite Nanomaterial / 7.8:
The Utilization of Biomineralization in Nanotechnology / 7.9:
Medical and Other Applications of Bionanotechnology / 8:
The Use of Drug Nanocrystals for Improved Application / 8.1:
The Use of Nano-Containers for Drug Delivery / 8.2:
The Use of Inorganic Nanowires for Biological Detection / 8.3:
The Use of Soft Lithography for Biotechnology / 8.4:
Contrast Agents by Nanomagnetic Materials / 8.5:
Nanoagriculture / 8.6:
Water Technology and Nanotechnology / 8.7:
Nanocosmetics / 8.8:
Solar Energy Applications / 8.9:
Future Prospects for Nanobiotechnology and Bionanotechnology / 9:
The Marriage of Molecular Biology and Nanotechnology / 9.1:
The Engineering of Modified Biological Systems for the Assembly of Nanostructures / 9.2:
Nanotechnology and Tissue Engineering / 9.3:
Engineering of the Brain Tissue / 9.4:
Making Artificial Biological Inorganic Composites / 9.5:
Nanobio Machines and Nanorobots / 9.6:
Concluding Remarks: The Prospects and Dangers of the Nanobiological Revolution / 10:
There's Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics - by Richard P. Feynman / Appendix A:
List of Bionanotechnological and Nanobiotechnological Companies / Appendix B:
Glossary / Appendix C:
Bibliography
Index
Preface
Introduction: Nanobiotechnology and Bionanotechnology / 1:
Classical Biotechnology: Industrial Production Using Biological Systems / 1.1:
8.

図書

図書
Alan Weisman
出版情報: New York : Thomas Dunne Books, c2007  viii, 324 p. ; 25 cm
所蔵情報: loading…
9.

図書

図書
edited by Chad A. Mirkin and Christof M. Niemeyer
出版情報: Weinheim : Wiley-VCH, c2007  xxvi, 432 p. ; 25 cm
シリーズ名: Nanobiotechnology / edited by Christof M. Niemeyer and Chad A. Mirkin ; 2
所蔵情報: loading…
10.

図書

図書
edited by Challa S.S.R. Kumar
出版情報: Weinheim : Wiley-VCH, c2007  xxi, 408 p. ; 25 cm
シリーズ名: Nanotechnologies for the life sciences ; v. 8
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Authors
Biosensing using Carbon Nanotube Field-effect Transistors / Padmakar D. Kichambare ; Alexander Star1:
Overview / 1.1:
Introduction / 1.2:
Carbon Nanotube Field-effect Transistors (NTFETs) / 1.3:
Sensor Applications of NTFETs / 1.4:
Conclusion and Outlook / 1.5:
Carbon Nanotube-based Sensor / Jian-Shan Ye ; Fwu-Shan Sheu2:
Introduction of Carbon Nanotubes / 2.1:
Growth of Carbon Nanotubes / 2.3:
Methods to Prepare CNTs-based Sensors and Biosensors / 2.4:
Application of CNTs-based Electrochemical Sensors and Biosensors / 2.5:
Functionalization of CNTs / 2.6:
Conclusions and Future Prospects / 2.7:
Nanotubes, Nanowires, and Nanocantilevers in Biosensor Development / Jun Wang ; Guodong Liu ; Yuehe Lin3:
Carbon Nanotubes in Biosensor Development / 3.1:
Nanowires in Biosensor Development / 3.3:
Nanocantilevers for Biosensors / 3.4:
Summary / 3.5:
Fullerene-based Electrochemical Detection Methods for Biosensing / Nikos Chaniotakis4:
Aims of the Chapter / 4.1:
Electrochemical Biosensing / 4.3:
Evolution of Biosensors / 4.4:
Mediation Process in Biosensors / 4.5:
Fullerenes / 4.6:
Fullerene-mediated Biosensing / 4.7:
Conclusions / 4.8:
Optical Biosensing Based on Metal and Semiconductor Colloidal Nanocrystals / Roberto Comparelli ; Maria Lucia Curri ; Pantaleo Davide Cozzoli ; Marinella Striccoli5:
Colloidal Nanocrystals / 5.1:
Nanocrystal Functionalization for Biosensing / 5.4:
Optical Techniques / 5.5:
Advantages and Disadvantages of Nanocrystals in Optical Detection / 5.6:
Applications / 5.7:
Towards Marketing / 5.8:
Quantum Dot-based Nanobiohybrids for Fluorescent Detection of Molecular and Cellular Biological Targets / Zhivko Zhelev ; Rumiana Bakalova ; Hideki Ohba ; Yoshinobu Baba5.9:
Quantum Dots - Basic Principles of Design and Synthesis, Optical Properties, and Advantages over Classical Fluorophores / 6.1:
Quantum Dots for Fluorescent Labeling and Imaging / 6.3:
Quantum Dots for Immunoblot Analysis with Fluorescent Detection / 6.4:
Quantum Dots for FRET Analyses, Time-resolved Fluorimetry, and Development of Optical Recognition-based Biosensors / 6.5:
Quantum Dots as New Fluorescent Standards for the Thin Calibration of Fluorescent Instrumentation / 6.6:
Detection of Biological Materials by Gold Nano-biosensor-based Electrochemical Method / Juan Jiang ; Manju Basu ; Sara Seggerson ; Albert Miller ; Michael Pugia ; Subhash Basu7:
Template Synthesis of Gold Nano-wire Arrays for Biosensor Applications / 7.1:
Synthesis of a Linker and its Attachment to Gold Posts of GNW followed by Binding to Specific Antibodies / 7.3:
Development of Electrochemical Nano-biosensor for Bacteria Detection / 7.4:
Dendrimer-based Electrochemical Detection Methods / Hak-Sung Kim ; Hyun C. Yoon7.5:
Applications for Biosensor / 8.1:
Preface
List of Authors
Biosensing using Carbon Nanotube Field-effect Transistors / Padmakar D. Kichambare ; Alexander Star1:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼