close
1.

図書

図書
editor, Wolfgang Fritzsche
出版情報: Melville, New York : American Institute of Physics, c2002  xi, 133 p. ; 25 cm
シリーズ名: AIP conference proceedings ; 640
所蔵情報: loading…
2.

図書

図書
editor, Wolfgang Fritzsche
出版情報: Melville, N.Y. : American Institute of Physics, c2004  ix, 116 p. ; 25 cm
シリーズ名: AIP conference proceedings ; v. 725
所蔵情報: loading…
目次情報: 続きを見る
Preface
Scientific Committee
Control of DNA Positioning
Adsorption of DNA Molecule and DNA Patterning on Si Substrate / S.-i. Tanaka ; M. Taniguchi ; T. Kawai
Multi-Level Self Organization Process for a Parallel Fabrication of Aligned Metal Structures in Microelectrode Gaps Using DNA and Metal Nanoparticles / W. Fritzsche ; G. Maubach ; A. Csaki ; D. Born ; U. Klenz
DNA Derivatization
Non-Covalent Binding of DNA to Carbon Nanotubes Controlled by Biological Recognition Complex / L. Goux-Capes ; A. Filoramo ; D. Cote ; E. Valentin ; J.-P. Bourgoin ; J.-N. Patillon
Self-Assembly Experiments with PNA-Derivatized Carbon Nanotubes / R. den Dulk ; K. A. Williams ; P. T. M. Veenhuizen ; M. C. de Koning ; M. Overhand ; C. Dekker
Micromachined Substrates for Molecular Follow-Up in DNA-Templated Nanofabrication / H. A. Becerril ; A. R. Nelson ; A. T. Woolley
DNA Superstructures
Self-Assembled DNA Structures for Nanoconstruction / H. Yan ; P. Yin ; S. H. Park ; H. Li ; L. Feng ; X. Guan ; D. Liu ; J. H. Reif ; T. H. LaBean
Coupling G-Wires to Metal Nanoparticles / C. Holste ; A. Sondermann ; R. Moller
Hydration Layer Scanning Tunneling Microscopy of "G-Wire" DNA / T. Armstrong ; J. Root ; J. Vesenka
Dielectrophoretic Manipulation
Stretching DNA as a Template for Molecular Construction / M. Washizu ; Y. Kimura ; T. Kobayashi ; O. Kurosawa ; S. Matsumoto ; T. Mamine
Monitoring Dielectrophoretic Collection of DNA by Impedance Measurement / R. Holzel ; F. F. Bier
Manipulation of Metal Nanoparticles in Micrometer Electrode Gaps by Dielectrophoresis / R. Kretschmer
Appendices
Program
Symposium Notes / James Vesenka
Photos
List of Participants
Author Index
Preface
Scientific Committee
Control of DNA Positioning
3.

図書

図書
editor, Wolfgang Fritzsche
出版情報: Melville, N.Y. : American Institute of Physics, c2006  vii, 116 p. ; 25 cm
シリーズ名: AIP conference proceedings ; v. 859
所蔵情報: loading…
目次情報: 続きを見る
Preface
Immobilization
Fabrication of DNA Mediated Devices: Alignment of Single DNA and the 1-D Pattern of DNA Self-Assembly / Y. Mi ; K. Wan ; B. Wei ; I.-M. Hsing ; C.-M. Chan
Defined DNA Immobilization for a DNA-Based Micro-Nano Integration / A. Csaki ; A. Wolff ; T. Schuler ; R. Moller ; G. Festag ; R. Kretschmer ; G. Maubach ; W. Fritzsche
Rolling Circle Amplification for Spatially Directed Synthesis of a Solid Phase Anchored Single-Stranded DNA Molecule / E. Reiss ; R. Holzel ; M. von Nickisch-Rosenegk ; F. F. Bier
A Novel Approach to Self-Organized Pattern Formation of Biomolecules at Silicon Surfaces / M. Kittler ; X. Yu ; M. Reiche ; T. Wilhelm ; M. Seibt ; O. Voss
Metallization
Synthesis of Palladium Conductive DNA-Based Nanowires / K. Nguyen ; S. Streiff ; S. Lyonnais ; L. Goux-Capes ; A. Filoramo ; M. Goffman ; J. P. Bourgoin
Directed DNA Metallization: Towards the Construction of Rationally Designed Conductive Nanodevices / G. A. Burley ; J. Gierlich ; D. M. Hammond ; M. E. Phillipp ; G. Carell ; T. Carell
Specific Metal Deposition onto Immobilized Metal Nanoparticles Studied on Single Particle Level / A. Steinbruck
Electrical Field and Conductivity
Quantifying DNA Dielectrophoresis / M.-L. Du
Parallel Assisted Assembly of Multilayer DNA and Protein Nanoparticle Structures Using a CMOS Electronic Array / M. J. Heller ; D. A. Dehlinger ; B. D. Sullivan
Analysis of G-Wire DNA Conductivity / J. Vesenka ; R. Baron ; S. D. Collins ; R. L. Smith
Electronic Properties of DNA-Templated Single-Walled Carbon Nanotubes / H. Xin ; H. A. Becerril ; A. T. Woolley
Microscopic Characterization
Comparative Study of Atomic Force Imaging of DNA on Graphite and Mica Surfaces / D. Klinov ; B. Dwir ; E. Kapon ; N. Borovok ; T. Molotsky ; A. Kotlyar
Appendices
Program
Photographs
Participants
Author Index
Preface
Immobilization
Fabrication of DNA Mediated Devices: Alignment of Single DNA and the 1-D Pattern of DNA Self-Assembly / Y. Mi ; K. Wan ; B. Wei ; I.-M. Hsing ; C.-M. Chan
4.

図書

図書
Michael Köhler, Wolfgang Fritzsche
出版情報: Weinheim : Wiley-VCH, c2004  ix, 272 p ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
The Way into the Nanoworld / 1.1:
From Micro- to Nanotechniques / 1.1.1:
Definition of Nanostructures / 1.1.2:
Insight into the Nanoworld / 1.1.3:
Intervention into the Nanoworld / 1.1.4:
Building Blocks of Nanotechnology / 1.2:
Interactions and Topology / 1.3:
The Microscopic Environment of the Nanoworld / 1.4:
Molecular Basics / 2:
Particles and Bonds / 2.1:
Chemical Bonds in Nanotechnology / 2.1.1:
Van der Waals Interactions / 2.1.2:
Dipole-Dipole Interactions / 2.1.3:
Ionic Interactions / 2.1.4:
Metal Bonds / 2.1.5:
Covalent Bonds / 2.1.6:
Coordinative Bonds / 2.1.7:
Hydrogen Bridge Bonds / 2.1.8:
Polyvalent Bonds / 2.1.9:
Chemical Structure / 2.2:
Binding Topologies / 2.2.1:
Building Blocks of Covalent Architecture / 2.2.2:
Units for a Coordinated Architecture / 2.2.3:
Building Blocks for Weakly Bound Aggregates / 2.2.4:
Assembly of Complex Structures through the Internal Hierarchy of Binding Strengths / 2.2.5:
Reaction Probability and Reaction Equilibrium / 2.2.6:
Microtechnological Foundations / 3:
Planar Technology / 3.1:
Preparation of Thin Layers / 3.2:
Condition and Preprocessing of the Substrate Surface / 3.2.1:
Layer Deposition from the Gas Phase / 3.2.2:
Evaporation / 3.2.3:
Sputtering / 3.2.4:
Chemical Vapor Deposition / 3.2.5:
Galvanic Deposition / 3.2.6:
Deposition by Spinning (Spin Coating) / 3.2.7:
Shadow-mask Deposition Techniques / 3.2.8:
Preparation of Ultrathin Inorganic Layers and Surface-bound Nanoparticles / 3.3:
Ultrathin Layers by Vacuum Deposition Processes / 3.3.1:
Deposition of Ultrathin Films from the Liquid Phase / 3.3.2:
In Situ Generation of Ultrathin Inorganic Films by Chemical Surface Modification / 3.3.3:
In Situ Formation of Ultrathin Inorganic Layers on Heteroorganic Materials / 3.3.4:
Immobilization of Nanoparticles / 3.3.5:
In Situ Formation of Inorganic Nanoparticles / 3.3.6:
Structure Generation and Fabrication of Lithographic Masks / 3.4:
Adhesive Mask Technique / 3.4.1:
Role of Resist in Photolithography / 3.4.2:
Serial Pattern Transfer / 3.4.3:
Group Transfer Processes / 3.4.4:
Maskless Structure Generation / 3.4.5:
Soft Lithography / 3.4.6:
Etching Processes / 3.5:
Etching Rate and Selectivity / 3.5.1:
Isotropic and Anisotropic Etching Processes / 3.5.2:
Lithographic Resolution in Etching Processes / 3.5.3:
Wet Etching Processes / 3.5.4:
Dry Etching Processes / 3.5.5:
High-resolution Dry Etching Techniques / 3.5.6:
Choice of Mask for Nanolithographic Etching Processes / 3.5.7:
Packaging / 3.6:
Biogenic and Bioanalogue Molecules in Technical Microstructures / 3.7:
Preparation of Nanostructures / 4:
Principles of Fabrication / 4.1:
Subtractive and Additive Creation of Nanostructures / 4.1.1:
Nanostructure Generation by Lift-off Processes / 4.1.2:
Principles of Nanotechnical Shape-definition and Construction / 4.1.3:
Nanomechanical Structure Generation / 4.2:
Scaling Down of Mechanical Processing Techniques / 4.2.1:
Local Mechanical Cutting Processes / 4.2.2:
Surface Transport Methods / 4.2.3:
Reshaping Processes / 4.2.4:
Printing Processes / 4.2.5:
Nanolithography / 4.3:
Structure Transfer by Electromagnetic Radiation / 4.3.1:
Nanolithographic Transfer of Groups of Elements by Optical Projection / 4.3.2:
EUV and X-ray Lithography / 4.3.3:
Multilayer Resists Techniques with Optical Pattern Transfer / 4.3.4:
Near-field Optical Structure Techniques with Contact Masks / 4.3.5:
Energetic Particles in Nanolithographic Structure Transfer / 4.3.6:
Electron Beam Lithography / 4.3.7:
Ion Beam Lithography / 4.3.8:
Atomic Beam Lithography / 4.3.9:
Molecular and Nanoparticle Beam Lithography / 4.3.10:
Direct Writing of Structures by a Particle Beam / 4.3.11:
Single-particle Beam Processes / 4.3.12:
Nanofabrication by Self-structuring Masks / 4.3.13:
Nanofabrication by Scanning Probe Techniques / 4.4:
Scanning Force Probes / 4.4.1:
Particle Manipulation With a Scanning Tunneling Microscope (STM) / 4.4.2:
Thermo-mechanical Writing of Nanostructures / 4.4.3:
Electrically Induced Structure Generation by Scanning Probe Techniques / 4.4.4:
Chemical Electrodeless Induced Scanning Probe Structure Generation / 4.4.5:
Nanostructure Generation by Optical Near-field Probes / 4.4.6:
Nanotechnical Structures / 5:
Inorganic Solids / 5.1:
Influence of Material Morphology on Nanoscale Pattern Processes / 5.1.1:
Inorganic Dielectrics / 5.1.2:
Metals / 5.1.3:
Semiconductors / 5.1.4:
Carbon / 5.1.5:
Organic Solids and Layer Structures / 5.2:
Solids Composed of Smaller Molecules / 5.2.1:
Organic Monolayer and Multilayer Stacks / 5.2.2:
Synthetic Organic Polymers / 5.2.3:
Biopolymers / 5.2.4:
Molecular Monolayer and Layer Architectures / 5.3:
Langmuir-Blodgett Films / 5.3.1:
Self-assembled Surface Films / 5.3.2:
Binding of Molecules on Solid Substrate Surfaces / 5.3.3:
Secondary Coupling of Molecular Monolayers / 5.3.4:
Categories of Molecular Layers / 5.3.5:
Molecular Coupling Components (Linkers) and Distance Components (Spacers) / 5.3.6:
Definition of Binding Spots on Solid Substrates / 5.3.7:
Architectures with Single Molecules / 5.4:
Single Molecules as Nanostructures / 5.4.1:
Strategies of Molecular Construction / 5.4.2:
Biogenic and Bioanalogous Nanoarchitectures / 5.4.3:
DNA Nanoarchitectures / 5.4.4:
Synthetic Supramolecules / 5.4.5:
Nanoparticles and Nanocompartments / 5.4.6:
Combination of Molecular Architectures and Nanoparticles with Planar Technical Structures / 5.5:
Characterization of Nanostructures / 6:
Geometrical Characterization / 6.1:
Layer Thickness and Vertical Structure Dimensions / 6.1.1:
Lateral Dimensions / 6.1.2:
Structures that Assist Measurement / 6.1.3:
Characterization of Composition of Layers and Surfaces / 6.2:
Atomic Composition / 6.2.1:
Characterization of the Chemical Surface / 6.2.2:
Functional Characterization of Nanostructures / 6.3:
Nanotransducers / 7:
Design of Nanotransducers / 7.1:
Nanomechanical Elements / 7.2:
Nanomechanical Sensors / 7.2.1:
Nanometer-precision Position Measurements with Conventional Techniques / 7.2.2:
Electrically Controlled Nanoactuators / 7.2.3:
Chemically Driven Nanoactuators / 7.2.4:
Rigidity of Nanoactuators / 7.2.5:
Nanoelectronic Devices / 7.3:
Electrical Contacts and Nanowires / 7.3.1:
Nanostructured Tunneling Barriers / 7.3.2:
Quantum Dots and Localization of Elementary Particles / 7.3.3:
Nanodiodes / 7.3.4:
Electron Islands and Nanotransistors / 7.3.5:
Nanoswitches, Molecular Switches and Logic Elements / 7.3.6:
Nanooptical Devices / 7.4:
Nanostructures as Optical Sensors / 7.4.1:
Nanostructured Optical Actuators / 7.4.2:
Nanooptical Switching and Conversion Elements / 7.4.3:
Magnetic Nanotransducers / 7.5:
Chemical Nanoscale Sensors and Actuators / 7.6:
Technical Nanosystems / 8:
What are Nanosystems? / 8.1:
Systems with Nanocomponents / 8.2:
Entire Systems with Nanometer Dimensions / 8.3:
Table of Examples
References
Index
Introduction / 1:
The Way into the Nanoworld / 1.1:
From Micro- to Nanotechniques / 1.1.1:
5.

図書

図書
volume editors, Wolfgang Fritzsche, Jürgen Popp ; with contributions by A. Aloisi ... [et al.]
出版情報: Heidelberg ; London : Springer, c2012  xii, 329 p. ; 25 cm
シリーズ名: Springer series on chemical sensors and biosensors : methods and applications / Otto S. Wolfbeis series editor ; 10
所蔵情報: loading…
6.

電子ブック

EB
Wolfgang Fritzsche, Jürgen Popp
出版情報: SpringerLink Books Chemistry And Materials Science 2012 , Dordrecht : Springer Berlin Heidelberg, 2012
所蔵情報: loading…
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼