close
1.

図書

図書
C. N. R. Rao, A. Müller, A. K. Cheetham (eds.)
出版情報: Weinheim : Wiley-VCH, c2004  2v. (xx, 741 p.) ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Contributors
Nanomaterials:
An Introduction. / Volume 1:
Strategies for the Scalable Synthesis of Quantum Dots and Related Nanodimensional Materials. / 1:
Moving Nanoparticles Around: Phase-Transfer Processes in Nanomaterials Synthesis. / C. N. R. Rao
Mesoscopic Assembly and Other Properties of Metal and Semiconductor Nanocrystals.
Oxide Nanoparticles.Sonochemistry and Other Novel Methods Developed for the Synthesis of Nanoparticles. / A. Muller
Solvothermal Synthesis of Non-Oxide Nanomaterials.
Nanotubes and Nanowires.Synthesis, Assembly and Reactivity of Metallic Nanorods. / A. K. Cheetham
Oxide-Assisted Growth of Silicon and Related Nanowires Growth Mechanism, Structure and Properties.
Electronic Structure and Spectroscopy of Semiconductor Nanocrystals.
Nanomaterials--An Introduction
Core-shell Semiconductor Nanocrystals for Biological Labeling.
Large Semiconductor Molecules. / 1.1:
Oxomolybdates:
Size Effects
From Structures to Functions in a New Era of Nanochemistry.
Nanostructural Polymers / 1.2:
Recent Developments in the Chemistry and Chemical Applications of Porous Silicon.
Synthesis and Assembly
Nanocatalysis.
Nanoporous Materials.Photochemistry and Electrochemistry of Nanoassemblies. / 1.3:
Electrochemistry with Nanoparticles
Techniques
Nanolithography and Nanomanipulation.
Applications and Technology Development / 1.4:
Nanoelectronics / 1.5:
Other Aspects / 1.6:
Concluding Remarks / 1.7:
Bibliography
Strategies for the Scalable Synthesis of Quantum Dots and Related Nanodimensional Materials / P. O'Brien ; N. Pickett2:
Introduction / 2.1:
Defining Nanodimensional Materials / 2.2:
Potential Uses for Nanodimensional Materials / 2.3:
The General Methods Available for the Synthesis of Nanodimensional Materials / 2.4:
Precipitative Methods / 2.4.1:
Reactive Methods in High Boiling Point Solvents / 2.4.2:
Hydrothermal and Solvothermal Methods / 2.4.3:
Gas-Phase Synthesis of Semiconductor Nanoparticles / 2.4.4:
Synthesis in a Structured Medium / 2.4.5:
The Suitability of Such Methods for Scaling / 2.5:
Conclusions and Perspectives on the Future / 2.6:
Acknowledgements
References
Moving Nanoparticles Around: Phase-Transfer Processes in Nanomaterials Synthesis / M. Sastry3:
Water-Based Gold Nanoparticle Synthesis / 3.1:
Advantages / 3.2.1:
Disadvantages / 3.2.2:
Organic Solution-Based Synthesis of Gold Nanoparticles / 3.3:
Moving Gold Nanoparticles Around / 3.3.1:
Phase Transfer of Aqueous Gold Nanoparticles to Non-Polar Organic Solvents / 3.4.1:
Transfer of Organically Soluble Gold Nanoparticles to Water / 3.4.2:
Acknowledgments
Mesoscopic Assembly and Other Properties of Metal and Semiconductor Nanocrystals / G. U. Kulkarni ; P. J. Thomas4:
Abstract
Synthetic Strategies / 4.1:
General Methods / 4.2.1:
Size Control / 4.2.2:
Shape Control / 4.2.3:
Tailoring the Ligand Shell / 4.2.4:
Programmed Assemblies / 4.3:
One-Dimensional Arrangements / 4.3.1:
Two-Dimensional Arrays / 4.3.2:
Three-Dimensional Superlattices / 4.3.3:
Superclusters / 4.3.4:
Colloidal Crystals / 4.3.5:
Nanocrystal Patterning / 4.3.6:
Emerging Applications / 4.4:
Isolated Nanocrystals / 4.4.1:
Collective Properties / 4.4.2:
Nanocomputing / 4.4.3:
Conclusions / 4.5:
Oxide Nanoparticles / R. Seshadri5:
Magnetite Particles in Nature / 5.1:
Routes for the Preparation of Isolated Oxide Nanoparticles / 5.3:
Hydrolysis / 5.3.1:
Oxidation / 5.3.2:
Thermolysis / 5.3.3:
Metathesis / 5.3.4:
Solvothermal Methods / 5.3.5:
Prospects / 5.4:
Sonochemistry and Other Novel Methods Developed for the Synthesis of Nanoparticles / Y. Mastai ; A. Gedanken6:
Sonochemistry / 6.1:
Sonochemical Fabrication of Nanometals / 6.1.1:
Sonochemical Fabrication of Nano-Metallic Oxides / 6.1.2:
Sonoelectrochemistry / 6.2:
Sonoelectrochemical Synthesis of Nanocrystalline Materials / 6.2.1:
Microwave Heating / 6.3:
Microwave Synthesis of Nanomaterials / 6.3.1:
Solvothermal Synthesis of Non-Oxide Nanomaterials / Y. T. Qian ; Y. L. Gu ; J. Lu7:
Solvothermal Synthesis of III-V Nanomaterials / 7.1:
Synthesis of Diamond, Carbon Nanotubes and Carbides / 7.3:
Synthesis of Si[subscript 3]N[subscript 4], P[subscript 3]N[subscript 5], Metal Nitrides and Phosphides / 7.4:
Synthesis of BN, B[subscript 4]C, BP and Borides / 7.5:
Synthesis of One-Dimensional Metal Chalcogenide Nanocrystallites / 7.6:
Room Temperature Synthesis of Nanomaterials / 7.7:
Nanotubes and Nanowires / A. Govindaraj8:
Carbon Nanotubes / 8.1:
Synthesis / 8.2.1:
Structure and Characterization / 8.2.2:
Mechanism of Formation / 8.2.3:
Chemically Modified Carbon Nanotubes / 8.2.4:
Electronic Structure, Properties and Devices / 8.2.5:
Inorganic Nanotubes / 8.3:
Preliminaries / 8.3.1:
General Synthetic Strategies / 8.3.2:
Structures / 8.3.3:
Useful Properties of Inorganic Nanotubes / 8.3.4:
Nanowires / 8.4:
Properties of Nanowires / 8.4.1:
Synthesis, Assembly and Reactivity of Metallic Nanorods / C. J. Murphy ; N. R. Jana ; L. A. Gearheart ; S. O. Obare ; K. K. Caswell ; S. Mann ; C. J. Johnson ; S. A. Davis ; E. Dujardin ; K. J. Edler9:
Seed-Mediated Growth Approach to the Synthesis of Inorganic Nanorods and Nanowires / 9.1:
Assembly of Metallic Nanorods: Self-Assembly vs. Designed Chemical Linkages / 9.3:
Reactivity of Metallic Nanoparticles Depends on Aspect Ratio / 9.4:
Conclusions and Future Prospects / 9.5:
Oxide-Assisted Growth of Silicon and Related Nanowires: Growth Mechanism, Structure and Properties / S. T. Lee ; R. Q. Zhang ; Y. Lifshitz10:
Oxide-Assisted Nanowire Growth / 10.1:
Discovery of Oxide-Assisted Growth / 10.2.1:
Oxide-Assisted Nucleation Mechanism / 10.2.2:
Oxide-Assisted Growth Mechanism / 10.2.3:
Comparison between Metal Catalyst VLS Growth and OAG / 10.2.4:
Control of SiNW Nanostructures in OAG / 10.3:
Morphology Control by Substrate Temperature / 10.3.1:
Diameter Control of Nanowires / 10.3.2:
Large-Area Aligned and Long SiNWs via Flow Control / 10.3.3:
Si Nanoribbons / 10.3.4:
Nanowires of Si Compounds by Multistep Oxide-Assisted Synthesis / 10.4:
Nanocables / 10.4.1:
Metal Silicide/SiNWs from Metal Vapor Vacuum Arc Implantation / 10.4.2:
Synthesis of Oriented SiC Nanowires / 10.4.3:
Implementation of OAG to Different Semiconducting Materials / 10.5:
Chemical Properties of SiNWs / 10.6:
Stability of H-Terminated SiNW Surfaces / 10.6.1:
Reduction of Metals in Liquid Solutions / 10.6.2:
Chemical Sensing of SiNWs / 10.6.3:
Use of SiNWs as Templates for Nanomaterial Growth / 10.6.4:
Optical and Electrical Properties of SiNWs / 10.7:
Raman and PL of SiNWs / 10.7.1:
Field Emission from Different Si-Based Nanostructures / 10.7.2:
STM and STS Measurements of SiNWs and B-Doped SiNWs / 10.7.3:
Periodic Array of SiNW Heterojunctions / 10.7.4:
Modeling / 10.8:
High Reactivity of Silicon Suboxide Vapor / 10.8.1:
Thermal and Chemical Stabilities of Pure Silicon Nanostructured Materials / 10.8.2:
Thermal and Chemical Stabilities of Hydrogenated Silicon Nanostructures / 10.8.3:
Summary / 10.9:
Acknowledgment
Electronic Structure and Spectroscopy of Semiconductor Nanocrystals / S. Sapra ; D. D. SarmaVolume 2:
Structural Transformations / 11.1:
Ultraviolet-Visible Absorption Spectroscopy / 11.3:
Fluorescence Spectroscopy / 11.4:
Electronic Structure Calculations / 11.5:
Effective Mass Approximation / 11.5.1:
Empirical Pseudopotential Method / 11.5.2:
Tight-Binding Method / 11.5.3:
Photoemission Studies / 11.6:
Core Level Photoemission / 11.6.1:
Valence Band Photoemission / 11.6.2:
Core-Shell Semiconductor Nanocrystals for Biological Labeling / R. E. Bailey ; S. Nie11.7:
Optical Properties / 12.1:
Surface Modification and Bioconjugation / 12.3:
Applications / 12.5:
Large Semiconductor Molecules / J. F. Corrigan ; M. W. DeGroot13:
Nickel Chalcogenides / 13.1:
Group XI Chalcogenides / 13.3:
Copper Sulfide and Copper Selenide Nanoclusters / 13.3.1:
Cu[subscript 2-x]Te and Ag[subscript 2]Te / 13.3.2:
Ag[subscript 2]S / 13.3.3:
Ag[subscript 2]Se / 13.3.4:
Group XII-chalogenides and the Quantum Confinement Effect / 13.4:
CdS / 13.4.1:
Ternary MM'E / 13.5:
Metal Pnictides from E(SiMe[subscript 3])[subscript 3] Reagents / 13.6:
Conclusions and Outlook / 13.7:
Oxomolybdates: From Structures to Functions in a New Era of Nanochemistry / S. Roy14:
Introduction: Similarities between Nanotechnology in Nature and Chemistry? / 14.1:
Sizes, Shapes, and Complexity of Nano-objects are Determined by the Nature and Variety of the Constituent Building Blocks / 14.2:
Nanoscaled Clusters with Unusual Form-Function Relationships / 14.3:
Perspectives for Materials Science and Nanotechnology: En Route to Spherical-Surface, Nanoporous-Cluster, and Super-Supramolecular Chemistry Including the Option of Modelling Cell Response / 14.4:
Nanostructured Polymers / S. Ramakrishnan15:
Macromolecular Structural Control / 15.1:
Living Polymerization / 15.2.1:
Polymer Conformational Control / 15.3:
Morphology of Block Copolymers / 15.4:
Nanostructures Based on Bulk Phase Separation / 15.5:
Nanostructures Based on Lyotropic Mesophases / 15.6:
Core-Crosslinked Systems / 15.6.1:
Shell-Crosslinked Systems / 15.6.2:
Nanocages / 15.6.3:
Rod-Coil Diblock Copolymers / 15.7:
Nanostructures from Polymerized Surfactant Assemblies / 15.8:
Summary and Outlook / 15.9:
Recent Developments in the Chemistry and Chemical Applications of Porous Silicon / J. M. Schmeltzer ; J. M. Buriak16:
Preparation and Characterization of Porous Silicon Substrates / 16.1:
Surface Chemistry of Porous Silicon Surfaces / 16.3:
Chemical Applications Based on Porous Silicon / 16.4:
Bioactive Porous Silicon / 16.4.1:
Micro Enzyme Reactors ([mu]IMERS) and Total Analysis Systems ([mu]TAS) / 16.4.2:
Porous Silicon Sensors / 16.4.3:
Explosive Porous Silicon / 16.4.4:
Desorption/Ionization on Silicon Mass Spectrometry (DIOS-MS) / 16.4.5:
Conclusion / 16.5:
Nanocatalysis / S. Abbet ; U. Heiz17:
Chemical Reactions on Point Defects of Oxide Surfaces / 17.1:
Chemical Reactions and Catalytic Processes on Free and Supported Clusters / 17.3:
Catalytic Processes on Free Metal Clusters / 17.3.1:
Chemical Reactions and Catalytic Cycles on Supported Clusters / 17.3.2:
Turn-Over Frequencies of Catalytic Reactions on Supported Clusters / 17.3.3:
Chemical Reactions Induced by Confined Electrons / 17.4:
Nanoporous Materials / P. M. Forster17.5:
Stability of Open-Framework Materials / 18.1:
Aluminosilicate Zeolites / 18.3:
Open-Framework Metal Phosphates / 18.4:
Aluminum Phosphates / 18.4.1:
Phosphates of Gallium and Indium / 18.4.2:
Tin(II) Phosphates and Antimony(III) Phosphates / 18.4.3:
Transition Metal Phosphates / 18.4.4:
Chalcogenides, Halides, Nitrides and Oxides / 18.5:
Sulfides and Selenides / 18.5.1:
Halides / 18.5.2:
Nitrides / 18.5.3:
Binary Metal Oxides / 18.5.4:
Sulfates / 18.5.5:
Hybrid Nanoporous Materials / 18.6:
Coordination Polymers / 18.6.1:
Hybrid Metal Oxides / 18.6.2:
Photochemistry and Electrochemistry of Nanoassemblies / P. V. Kamat18.7:
Metal and Semiconductor Nanostructures / 19.1:
Photoinduced Charge Transfer Processes in Semiconductor Nanoparticle Systems / 19.2:
Photoinduced Transformations of Metal Nanoparticles / 19.3:
Transient Bleaching of the Surface Plasmon Band / 19.3.1:
Laser Induced Fusion and Fragmentation of Metal Nanoclusters / 19.3.2:
Photoinduced Energy and Electron Transfer Process between Excited Sensitizer and Metal Nanocore / 19.3.3:
Electrochemistry of Semiconductor Nanostructures / 19.4:
Nanostructured Metal Oxide Films / 19.4.1:
Nanostructured Oxide Films Modified with Dyes and Redox Chromophores / 19.4.2:
Photocurrent Generation / 19.4.3:
Electrochemistry of Metal Nanostructures / 19.5:
Semiconductor-Metal Nanocomposites / 19.6:
Improving the Efficiency of Photocatalytic Transformations / 19.6.1:
Fermi Level Equilibration / 19.6.2:
Acknowledgement / 19.7:
Outline / S. Devarajan ; S. Sampath20:
Preparation of Nanostructures / 20.1:
Electrochemistry with Metallic Nanoparticles / 20.3:
Monolayer-Protected Nanoclusters / 20.3.1:
Nanoelectrode Ensembles / 20.3.2:
Single Electron Events / 20.4:
Probing Nanoparticles using Electrochemistry Coupled with Spectroscopy / 20.5:
Nanosensors / 20.6:
Biosensors / 20.6.1:
Chemical Sensors / 20.6.2:
Electrocatalysis / 20.7:
Summary and Perspectives / 20.8:
Nanolithography and Nanomanipulation / A. K. Raychaudhuri21:
Template Fabrication / 21.1:
Polycarbonate Etched Track Templates / 21.2.1:
Fabrication of Anodized Alumina Membrane / 21.2.2:
Anodized Alumina Membrane as a Mask for Physical Vapor Deposition / 21.2.3:
Templates Made in Block Copolymers / 21.2.4:
Fabrication of Nanostructures in the Templates / 21.3:
Electrodeposition / 21.3.1:
Sol-Gel Method / 21.3.2:
CVD Method / 21.3.3:
Scanning Probe Based Anodic Oxidation as a Tool for the Fabrication of Nanostructures / 21.4:
Oxidation of Metallic Substrates / 21.4.1:
Oxidation of Semiconducting Substrates / 21.4.2:
Use of Scanning Probe Microscopy in Dip Pen Nanolithography / 21.5:
Use of Scanning Probe Microscopy in Nanomanipulation / 21.6:
Nano-Electromechanical Systems / 21.7:
Index
Preface
List of Contributors
Nanomaterials:
2.

図書

図書
[editor, A. Müller] ; translated from the German by G. Gilbertson
出版情報: Manchester : Manchester University Press , New York : Barnes & Noble, c1968  214 p. ; 22 cm
所蔵情報: loading…
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼