close
1.

図書

図書
edited by Anne Bourlioux, Martin J. Gander and technical editor Gert Sabidussi
出版情報: Dordrecht : Kluwer Academic, c2002  xxii, 492 p. ; 25 cm
シリーズ名: NATO science series ; Series II . Mathematics, physics and chemistry ; v. 75
所蔵情報: loading…
目次情報: 続きを見る
Preface
Key to group picture
Participants
Contributors
Computation of large-scale quadratic forms and transfer functions using the theory of moments, quadrature and Pade approximation / Zhaojun Bai ; Gene Golub
Thin film dynamics: theory and applications / Andrea L. Bertozzi ; Mark Bowen
Numerical turbulent combustion: an asymptotic view via an idealized test-case / Anne Bourlioux
Multigrid methods: from geometrical to algebraic versions / Gundolf Haase ; Ulrich Langer
One-way operators, absorbing boundary conditions and domain decomposition for wave propagation / Laurence Halpern ; Adib Rahmouni
Deterministic and random dynamical systems: theory and numerics / Anthony R. Humphries ; Andrew M. Stuart
Optimal investment problems and volatility homogenization approximations / Mattias Jonsson ; Ronnie Sircar
Image processing with partial differential equations / Karol Mikula
Interface connections in domain decomposition methods / Frederic Nataf
A review of level set and fast marching methods for image processing / James A. Sethian
Recent developments in the theory of front propagation and its applications / Panagiotis E. Souganidis
Computing finite-time singularities in interfacial flows / Thomas P. Witelski
Index
Preface
Key to group picture
Participants
2.

図書

図書
edited by Didier Chatenay ... [et al.]
出版情報: Amsterdam ; Tokyo : Elsevier, 2005  xxiv, 354 p. ; 24 cm
所蔵情報: loading…
3.

図書

図書
edited by C.C. Chow ... [et al.]
出版情報: Amsterdam ; Tokyo : Elsevier, 2005  xxxii, 829 p. ; 24 cm
所蔵情報: loading…
4.

図書

図書
édité par A. Connes, K. Gawedzki, et J. Zinn-Justin
出版情報: Amsterdam ; Tokyo : Elsevier Science, c1998  xxxvii, 990 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
Lecturers
Seminar Speakers
Participants
Preface (French)
Preface (English)
Mathematics / Part I.:
Fields, Strings and Duality / R. DijkgraafCourse 1.:
Introduction / 1.:
What is a quantum field theory? / 2.:
Axioms vs. path-integrals / 2.1.:
Duality / 2.2.:
Quantum mechanics / 3.:
Supersymmetric quantum mechanics / 3.1.:
Quantum mechanics and perturbative field theory / 3.2.:
Two-dimensional topological field theory / 4.:
Axioms of topological field theory / 4.1.:
Topological field theory in two dimensions / 4.2.:
Example - quantum cohomology / 4.3.:
Riemann surfaces and moduli / 5.:
The moduli space of curves / 5.1.:
Example - genus one / 5.2.:
Surfaces with punctures / 5.3.:
The stable compactification / 5.4.:
Conformal field theory / 6.:
Algebraic approach / 6.1.:
Functorial approach / 6.2.:
Free bosons / 6.3.:
Free fermions / 6.4.:
Sigma models and T-duality / 7.:
Two-dimensional sigma models / 7.1.:
Toroidal models / 7.2.:
Intermezzo - lattices / 7.3.:
Spectrum and moduli of toroidal models / 7.4.:
The two-torus / 7.5.:
Path-integral computation of the partition function / 7.6.:
Supersymmetric sigma models and Calabi-Yau spaces / 7.7.:
Calabi-Yau moduli space and special geometry / 7.8.:
Perturbative string theory / 8.:
Axioms for string vacua / 8.1.:
Intermezzo - twisting and supersymmetry / 8.2.:
Example - The critical bosonic string / 8.3.:
Example - Twisted N = 2 SCFT / 8.4.:
Example - twisted minimal model / 8.5.:
Example - topological string / 8.6.:
Functorial definition / 8.7.:
Tree-level amplitudes / 8.8.:
Families of string vacua / 8.9.:
The Gauss-Manin connection / 8.10.:
Anti-holomorphic dependence and special geometry / 8.11.:
Local special geometry / 8.12.:
Gauge theories and S-duality / 9.:
Introduction to four-dimensional geometry / 9.1.:
The Lorentz group / 9.2.:
Duality in Maxwell theory / 9.3.:
The partition function / 9.4.:
Higher rank groups / 9.5.:
Dehn twists and monodromy / 9.6.:
Moduli spaces / 10.:
Supersymmetric or BPS configurations / 10.1.:
Localization in topological field theories / 10.2.:
Quantization / 10.3.:
Families of QFTs / 10.4.:
Moduli spaces of vacua / 10.5.:
Supersymmetric gauge theories / 11.:
Twisting and Donaldson theory / 11.1.:
Observables / 11.3.:
Abelian models / 11.4.:
Rigid special geometry / 11.5.:
Families of abelian varieties / 11.6.:
BPS states / 11.7.:
Non-abelian N = 2 gauge theory / 11.8.:
The Seiberg-Witten solution / 11.9.:
Physical interpretation of the singularities / 11.10.:
Implications for four-manifold invariants / 11.11.:
String vacua / 12.:
Perturbative string theories / 12.1.:
IIA or IIB / 12.2.:
D-branes / 12.3.:
Compactification / 12.4.:
Singularities revisited / 12.5.:
String moduli spaces / 12.6.:
Example - Type II on T[superscript 6] / 12.7.:
BPS states and D-branes / 13.:
Perturbative string states / 13.1.:
Perturbative BPS states / 13.2.:
D-brane states / 13.3.:
Example - Type IIA on K3 = Heterotic on T[superscript 4] / 13.4.:
Example - Type II on T[superscript 4] / 13.5.:
Example - Type II on K3 [times] S[superscript 1] = Heterotic on T[superscript 5] / 13.6.:
Example - Type IIA on X = Type IIB on Y / 13.7.:
References
How the Algebraic Bethe Ansatz Works for Integrable Models / L.D. FaddeevCourse 2.:
General outline of the course
XXX[subscript 1/2] model. Description
XXX[subscript 1/2] model. Bethe Ansatz equations
XXX[subscript 1/2] model. Physical spectrum in the ferromagnetic thermodynamic limit
XXX[subscript 1/2] model. BAE for an arbitrary configuration
XXX[subscript 1/2] model. Physical spectrum in the antiferromagnetic case
XXX[subscript s] model
XXX[subscript s] spin chain. Applications to the physical systems
XXZ model
Inhomogeneous chains and discrete time shift
Examples of dynamical models in discrete space-time
Conclusions and perspectives
Comments on the literature on BAE / 14.:
Supersymmetric Quantum Theory, Non-Commutative Geometry, and Gravitation / J. Frohlich ; O. Grandjean ; A. RecknagelCourse 3.:
The classical theory of gravitation
(Non-relativistic) quantum theory
Reconciling quantum theory with general relativity: quantum space-time-matter
Classical differential topology and -geometry and supersymmetric quantum theory
Pauli's electron
The special case where M is a Lie group
Supersymmetric quantum theory and geometry put into perspective
Supersymmetry and non-commutative geometry
Spin[superscript c] non-commutative geometry
The spectral data of spin[superscript c] NCG / 5.1.1.:
Differential forms / 5.1.2.:
Integration / 5.1.3.:
Vector bundles and Hermitian structures / 5.1.4.:
Generalized Hermitian structure on [Omega superscript k](A) / 5.1.5.:
Connections / 5.1.6.:
Riemannian curvature and torsion / 5.1.7.:
Generalized Kahler non-commutative geometry and higher supersymmetry / 5.1.8.:
Aspects of the algebraic topology of N = n supersymmetric spectral data / 5.1.9.:
Non-commutative Riemannian geometry
N = (1, 1) supersymmetry and Riemannian geometry / 5.2.1.:
Unitary connections and scalar curvature / 5.2.2.:
Remarks on the relation between N = 1 and N = (1, 1) spectral data / 5.2.5.:
Riemannian and spin[superscript c] "manifolds" in non-commutative geometry / 5.2.6.:
Algebraic topology of N = [characters not reproducible] spectral data / 5.2.7.:
Central extensions of supersymmetry, and equivariance / 5.2.8.:
N = (n, n) supersymmetry, and supersymmetry breaking / 5.2.9.:
Reparametrization invariance, BRST cohomology, and target space supersymmetry
The non-commutative torus
Spin geometry (N = 1) / 6.1:
Integration and Hermitian structure over [Omega superscript 1 subscript D](A[alpha]) / 6.1.1.:
Connections on [Omega superscript 1 subscript D](A[alpha]) / 6.1.3.:
Riemannian geometry (N = [characters not reproducible]
Kahler geometry (N = [characters not reproducible]
Applications of non-commutative geometry to quantum theories of gravitation
From point-particles to strings
A Schwinger-Dyson equation for string Green functions from reparametrization invariance and world-sheet supersymmetry
Some remarks on M(atrix) models
Two-dimensional conformal field theories
Recap of two-dimensional, local quantum field theory / 7.4.1.:
A dictionary between conformal field theory and Lie group theory / 7.4.2.:
Reconstruction of (non-commutative) target spaces from conformal field theory
Superconformal field theories, and the topology of target spaces
The N = 1 super-Virasoro algebra / 7.6.1.:
N = 2 and N = 4 supersymmetry; mirror symmetry / 7.6.2.:
Conclusions
Lectures on the Quantum Geometry of String Theory / B.R. GreeneCourse 4.:
What is quantum geometry? / 1.1.:
The ingredients / 1.2.:
The N = 2 superconformal algebra
The algebra
Representation theory of the N = 2 superconformal algebra
Chiral primary fields / 2.3.:
Spectral flow and the U(1) projection / 2.4.:
Four examples / 2.5.:
Example one: free field theory / 2.5.1.:
Example two: nonlinear sigma models / 2.5.2.:
Example three: Landau-Ginzburg models / 2.5.3.:
Example four: minimal models / 2.5.4.:
Families of N = 2 theories
Marginal operators
Moduli spaces: I
Interrelations between various N = 2 superconformal theories
Landau-Ginzburg theories and minimal models
Minimal models and Calabi-Yau manifolds: a conjectured correspondence
Arguments establishing minimal-model/Calabi-Yau correspondence
Mirror manifolds
Strategy of the construction
Minimal models and their automorphisms
Direct calculation
Constructing mirror manifolds
Examples / 5.5.:
Implications / 5.6.:
Spacetime topology change
Basic ideas
Mild topology change
Kahler moduli space / 6.2.1.:
Complex structure moduli space / 6.2.3.:
Implications of mirror manifolds: revisited / 6.2.4.:
Flop transitions / 6.2.5.:
An example / 6.2.6.:
Drastic topology change
Strominger's resolution of the conifold singularity / 6.3.1.:
Conifold transitions and topology change / 6.3.3.:
Symmetry Approach to the XXZ Model / T. MiwaCourse 5.:
The XXZ Hamiltonian for [Delta] [ -1
Transfer matrix
Symmetry of U[subscript q](sl[subscript 2])
Corner transfer matrix
Level 1 highest weight module
Half transfer matrix
Intertwiners
The vacuum vector
Diagonalization of the transfer matrix
Local operators and difference equations
Superstring Dualities, Dirichlet Branes and the Small Scale Structure of Space / M.R. DouglasSeminar 1.:
Duality and solitons in supersymmetric field theory
Duality and solitons in superstring theory
Dirichlet branes
Short distances in superstring theory
Further directions
Testing the Standard Model and Beyond / J. EllisSeminar 2.:
Introduction to the Standard Model and its (non-topological) defects
Testing the Standard Model
The electroweak vacuum
Motivations for supersymmetry
Model building
Physics with the LHC
Quantum Group Approach to Strongly Coupled Two Dimensional Gravity / J.-L. GervaisSeminar 3.:
Basic points about Liouville theory
The basic relations between 6j symbols
The Liouville string
Concluding remarks
N = 2 Superalgebra and Non-Commutative Geometry / H. Grosse ; C. Klimcik ; P. PresnajderSeminar 4.:
Commutative supersphere
Non-commutative supersphere
Outlook
Lecture on N = 2 Supersymmetric Gauge Theory / W. LercheSeminar 5.:
Semi-classical N = 2 Yang-Mills theory for G = SU(2)
The exact quantum moduli space
Solving the monodromy problem
Picard-Fuchs equations
Generalization to SU(n)
Physics / Part II.:
Noncommutative Geometry: The Spectral Aspect / A. ConnesCourse 6.:
Noncommutative geometry: an introduction
Infinitesimal calculus
Local index formula and the transverse fundamental class
The notion of manifold and the axioms of geometry
The spectral geometry of space-time
The KZB Equations on Riemann Surfaces / G. FelderCourse 7.:
Conformal blocks on Riemann surfaces
Kac-Moody groups
Principal G-bundles
Conformal blocks
The connection
The energy-momentum tensor
Flat structures
Connections on bundles of projective spaces / 3.3.:
The Friedan-Shenker connection / 3.4.:
The Knizhnik-Zamolodchikov-Bernard equations
Dynamical r-matrices
An explicit form for the connection
Transformation properties
Moving points
Fixing the complex structure
Proof of Theorem 5.2
From Diffeomorphism Groups to Loop Spaces via Cyclic Homology / J.-L. LodayCourse 8.:
Diffeomorphism group and pseudo-isotopy space
Algebraic K-theory via Quillen +-construction
The +-construction
First definition of Waldhausen's space A(X)
The Grothendieck group K[subscript 0]
Hochschild and cyclic homology, Lie algebras
Hochschild homology
Cyclic homology
Relationship with the Lie algebra homology of matrices
Computing A(X) out of the loop space [Lambda]X
Algebraic K-theory via Waldhausen S.-construction and Wh(X)
Waldhausen S.-construction
A(X) and Wh(X) via the S.-construction
Relating Wh(X) to pseudo-isotopy
Notation and terminology in algebraic topology / Appendix A.:
Homotopy theory / A.1.:
Classifying spaces / A.2.:
Simplicial sets and classifying spaces / Appendix B.:
More on classifying spaces of categories / B.1.:
Bisimplicial sets / B.2.:
References with comments
Quantum Groups and Braid Groups / M. RossoCourse 9.:
The Yang-Baxter equation, braid groups and Hopf algebras
Drinfeld's quantum double
The dual double construction
The quantum double and its properties
Hopf pairings and a generalized double
The quantized enveloping algebra U[subscript q]G
Construction of U[subscript q]G
A Hopf pairing U[subscript +] [times] U[subscript -] [right arrow] C(q) / 4.1.1.:
Some results from representation theory
The quantum shuffle construction
The quantum shuffle Hopf algebra
Hopf bimodules
Braidings
The cotensor Hopf algebra
The quantum symmetric algebra
The examples from abelian group algebras
A classification result
Multiplicative bases in the quantum shuffle algebra / 5.3.1.:
Consequences of growth conditions / 5.3.2.:
From Index Theory to Non-Commutative Geometry / N. TelemanCourse 10.:
Differential forms on smooth and Lipschitz manifolds
Riemannian metrics and L[subscript 2]-forms on smooth and Lipschitz manifolds
Hodge theory on smooth and Lipschitz manifolds
Analytical index of Fredholm operators on smooth and Lipschitz manifolds
Topological K-theory
Symbols of elliptic operators on smooth manifolds and their index
Characteristic classes, Chern character
Stiefel-Whitney classes of real vector bundles
Chern classes of complex vector bundles
Pontrjagin classes of real vector bundles
Chern-Weyl theory on smooth manifolds
Thom isomorphism
Thom isomorphism in cohomology
Thom isomorphism in K-theory
Comparison between the Thom isomorphism in cohomology and K-theory
Index theorem for smooth manifolds
Index theorem for Lipschitz manifolds
Quasi local formulas for Thom-Hirzebruch classes on quasi conformal manifolds
Compact Quantum Groups / S.L. WoronowiczCourse 11.:
Definitions and results
The Haar measure
Unitary representations
Right regular representation
The Hopf algebras
Peter-Weyl theory
Groups with faithful Haar measure
Seiberg-Witten Invariants and Vortex Equations / O. Garcia-PradaSeminar 6.:
Preliminaries on spin geometry, almost-complex geometry and self-duality
The Seiberg-Witten invariants
Kahler complex surfaces
Non-Kahler complex surfaces
Symplectic four-manifolds
Non-Abelian monopole equations
Quantization of Poisson Algebraic Groups and Poisson Homogeneous Spaces / P. Eting of ; D. KazhdanSeminar 7.:
Quantization of Poisson algebraic and Lie groups
Quantization of Poisson homogeneous spaces
Eta and Torsion / J. LottSeminar 8.:
Eta-invariant
Analytic torsion
Eta-forms
Analytic torsion forms
Symplectic Formalism in Conformal Field Theory / A. SchwarzSeminar 9.:
Symplectic formalism in classical field theory
Superconformal geometry
Superconformal field theory
Quantization of geometry associated to the quantized Knizhnik-Zamolodchikov equations / A. VarchenkoSeminar 10.:
KZ equations
Hypergeometric functions
Geometry of hypergeometric functions
qKZ equations
Solutions to the qKZ equations and eigenvectors of commuting Hamiltonians
Solutions to the qKZ equations
Difference equations of the discrete connection
p-Homology theory
Conclusion
Lecturers
Seminar Speakers
Participants
5.

図書

図書
edited by Alirio E. Rodrigues, Josepf M. Calo and Norman H. Sweed
出版情報: Alphen aan den Rijn : Sijthoff & Noordhoff, 1981  vii, 600 p. ; 25 cm
シリーズ名: NATO advanced study institutes series ; . Series E, Applied sciences ; no. 51 . Multiphase chemical reactors ; v. 1
所蔵情報: loading…
6.

図書

図書
edited by Alirio E. Rodrigues, Josepf M. Calo and Norman H. Sweed
出版情報: Alphen aan den Rijn : Sijthoff & Noordhoff, 1981  vii, 513 p. ; 25 cm
シリーズ名: NATO advanced study institutes series ; . Series E, Applied sciences ; no. 52 . Multiphase chemical reactors ; v. 2
所蔵情報: loading…
7.

図書

図書
edited by H. Bouchiat ... [et al.]
出版情報: Amsterdam : Elsevier, 2005  xxxii, 607 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Lecturers
Seminar speakers
Participants
Preface
Fundamental aspects of electron correlations and quantum transport in one-dimensional systems / Dmitrii L. MaslovCourse 1:
Introduction / 1:
Non-Fermi liquid features of Fermi liquids: 1D physics in higher dimensions / 2:
Long-range effective interaction / 2.1:
1D kinematics in higher dimensions / 2.2:
Infrared catastrophe / 2.3:
Dzyaloshinskii-Larkin solution of the Tomonaga-Luttinger model / 3:
Hamiltonian, anomalous commutators, and conservation laws / 3.1:
Reducible and irreducible vertices / 3.2:
Ward identities / 3.3:
Effective interaction / 3.4:
Dyson equation for the Green's function / 3.5:
Solution for the case g[subscript 2] = g[subscript 4] / 3.6:
Physical properties / 3.7:
Renormalization group for interacting fermions / 4:
Single impurity in a 1D system: scattering theory for interacting fermions / 5:
First-order interaction correction to the transmission coefficient / 5.1:
Renormalization group / 5.2:
Electrons with spins / 5.3:
Comparison of bulk and edge tunneling exponents / 5.4:
Bosonization solution / 6:
Spinless fermions / 6.1:
Fermions with spin / 6.2:
Transport in quantum wires / 7:
Conductivity and conductance / 7.1:
Dissipation in a contactless measurement / 7.2:
Conductance of a wire attached to reservoirs / 7.3:
Spin component of the conductance / 7.4:
Thermal conductance: Fabry-Perrot resonances of plasmons / 7.5:
Polarization bubble for small q in arbitrary dimensionality / Appendix A:
Polarization bubble in 1D / Appendix B:
Small q / Appendix B.1:
q near 2k[subscript F] / Appendix B.2:
Some details of bosonization procedure / Appendix C:
Anomalous commutators / Appendix C.1:
Bosonic operators / Appendix C.2:
Problem with backscattering / Appendix C.3:
References
Impurity in the Tomonaga-Luttinger model: A functional integral approach / I.V. Lerner ; I.V. YurkevichSeminar 1:
Functional integral representation
The effective action for the Tomonaga-Luttinger Model
The bosonized action for free electrons
Gauging out the interaction
Tunnelling density of states near a single impurity
Jacobian of the gauge transformation
Novel phenomena in double layer two-dimensional electron systems / J.P. EisensteinCourse 2:
Overview of physics in the quantum hall regime
Basics
Quantized hall effects
Double layer systems
Coulomb drag between parallel 2D electron gases
Basic concept
Experimental
Elementary theory of Coulomb drag
Comparison between theory and experiment
Tunneling between parallel two-dimensional electron gases
Ideal 2D-2D tunneling / 4.1:
Lifetime broadening / 4.2:
2D-2D tunneling in a perpendicular magnetic field / 4.3:
Strongly-coupled bilayer 2D electron systems and excitonic superfluidity
Quantum hall ferromagnetism
Tunneling and interlayer phase coherence at v[subscript T] = 1
Excitonic superfluidity at v[subscript T] = 1
Detecting excitonic superfluidity / 5.5:
Conclusions
Many-body theory of non-equilibrium systems / Alex KamenevCourse 3:
Motivation and outline / 1.1:
Closed time contour / 1.2:
Free boson systems
Partition function
Green functions
Keldysh rotation
Keldysh action and causality / 2.4:
Free bosonic fields / 2.5:
Collisions and kinetic equation
Interactions
Saddle point equations
Dyson equation
Self-energy
Kinetic term
Collision integral
Particle in contact with an environment
Quantum dissipative action
Saddle-point equation
Classical limit
Langevin equations / 4.4:
Martin-Siggia-Rose / 4.5:
Thermal activation / 4.6:
Fokker-Planck equation / 4.7:
From Matsubara to Keldysh / 4.8:
Dissipative chains and membranes / 4.9:
Fermions
Free fermion Keldysh action
External fields and sources
Tunneling current
Kinetic equation / 5.6:
Disordered fermionic systems
Disorder averaging
Non-linear [sigma]-model
Usadel equation / 6.3:
Fluctuations / 6.4:
Spectral statistics / 6.5:
Gaussian integration
Single particle quantum mechanics
Non-linear quantum coherence effects in driven mesoscopic systems / V.E. KravtsovCourse 4:
Weak Anderson localization in disordered systems
Drude approximation
Beyond Drude approximation
Weak localization correction
Non-linear response to a time-dependent perturbation
General structure of nonlinear response function
Approximation of single photon absorption/emission
Quantum rectification by a mesoscopic ring
Diffusion in the energy space
Quantum correction to absorption rate
Weak dynamic localization and no-dephasing points
Conclusion and open questions / 8:
Noise in mesoscopic physics / T. MartinCourse 5:
Poissonian noise
The wave packet approach
Generalization to the multi-channel case
Scattering approach based on operator averages
Average current
Noise and noise correlations
Zero frequency noise in a two terminal conductor
Noise reduction in various systems
Noise correlations at zero frequency
General considerations
Noise correlations in a Y-shaped structure
Finite frequency noise
Which correlator is measured?
Noise measurement scenarios
Finite frequency noise in point contacts
Noise in normal metal-superconducting junctions
Bogolubov transformation and Andreev current / 8.1:
Noise in normal metal-superconductor junctions / 8.2:
Noise in a single NS junction / 8.3:
Hanbury-Brown and Twiss experiment with a superconducting source of electrons / 8.4:
Noise and entanglement / 9:
Filtering spin/energy in superconducting forks / 9.1:
Tunneling approach to entanglement / 9.2:
Bell inequalities with electrons / 9.3:
Noise in Luttinger liquids / 10:
Edge states in the fractional quantum Hall effect / 10.1:
Transport between two quantum Hall edges / 10.2:
Keldysh digest for tunneling / 10.3:
Backscattering current / 10.4:
Poissonian noise in the quantum Hall effect / 10.5:
Effective charges in quantum wires / 10.6:
Higher moments of noise / Bertrand Reulet11:
The probability distribution P(i)
A simple model for a tunnel junction
Noise in Fourier space
Consequences
Effect of the environment
Imperfect voltage bias
Imperfect thermalization
Principle of the experiment
Possible methods
Experimental setup
Experimental results
Third moment vs. voltage and temperature
Effect of the detection bandwidth
Perspectives
Quantum regime
Noise thermal impedance
Conclusion
Electron subgap transport in hybrid systems combining superconductors with normal or ferromagnetic metals / F.W.J. HekkingCourse 6:
NS junctions in the clean limit
Single particle tunnelling in a tunnel junction
Bogoliubov-de Gennes equations
Disordered NIS junctions
Perturbation theory for NIS junction
Example: quasi-one-dimensional diffusive wire connected to a superconductor
Subgap noise of a superconductor-normal-metal tunnel interface
Tunnelling in a three-terminal system containing ferromagnetic metals
Co-tunnelling and crossed Andreev tunnelling rates
Discussion
Low-temperature transport through a quantum dot / Leonid I. Glazman ; Michael PustilnikCourse 7:
Model of a lateral quantum dot system
Thermally-activated conduction
Onset of Coulomb blockade oscillations
Coulomb blockade peaks at low temperature
Activationless transport through a blockaded quantum dot
Inelastic co-tunneling
Elastic co-tunneling
Kondo regime in transport through a quantum dot
Effective low-energy Hamiltonian
Linear response
Weak coupling regime: T[subscript K double less-than sign] T [double less-than sign delta]E
Strong coupling regime: T [double less-than sign] T[subscript K]
Beyond linear response
Splitting of the Kondo peak in a magnetic field
Kondo effect in quantum dots with large spin / 5.7:
Concluding remarks
Transport through quantum point contacts / Yigal MeirSeminar 3:
Spin-density-functional calculations
The Anderson model
Results
Current noise
Transport at the atomic scale: Atomic and molecular contacts / A. Levy Yeyati ; J.M. van RuitenbeekCourse 8:
Parity oscillations in atomic chains
Superconducting quantum point contacts
The Hamiltonian approach
Comparison to experimental results
Environmental effects
Classical phase diffusion
Dynamical Coulomb blockade
Single-molecule junctions
Solid State Quantum Bit Circuits / Daniel Esteve ; Denis VionCourse 9:
Why solid state quantum bits?
From quantum mechanics to quantum machines
Quantum processors based on qubits
Atom and ion versus solid state qubits / 1.3:
Electronic qubits / 1.4:
Qubits in semiconductor structures
Kane's proposal: nuclear spins of P impurities in silicon
Electron spins in quantum dots
Charge states in quantum dots
Flying qubits
Superconducting qubit circuits
Josephson qubits
How to maintain quantum coherence?
The quantronium circuit
Relaxation and dephasing in the quantronium
Readout
Coherent control of the qubit
Ultrafast 'DC' pulses versus resonant microwave pulses
NMR-like control of a qubit
Probing qubit coherence
Relaxation
Decoherence during free evolution
Decoherence during driven evolution
Qubit coupling schemes
Tunable versus fixed couplings
A tunable coupling element for Josephson qubits
Fixed coupling Hamiltonian
Control of the interaction mediated by a fixed Hamiltonian
Running a simple quantum algorithm
Conclusions and perspectives
Abstracts of seminars presented at the School
Lecturers
Seminar speakers
Participants
8.

図書

図書
edited by B. Landmark
出版情報: Oxford ; New York : Pergamon Press, c1963  vii, 340 p. ; 26 cm
所蔵情報: loading…
9.

図書

図書
organized by the London Mathematical Society and the University of Cambridge (a Nato Advanced Study Institute) ; edited by W.J. Harvey
出版情報: London ; New York : Academic Press, 1977  xiv, 405 p. ; 24 cm
所蔵情報: loading…
10.

図書

図書
edited by Paul F. Lurquin and Andris Kleinhofs
出版情報: New York : Plenum Press, c1983  ix, 282 p. ; 26 cm
シリーズ名: NATO ASI series ; ser. A . Life sciences ; v. 61
所蔵情報: loading…
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼