close
1.

図書

図書
sponsored by the Applied Mechanics Division, ASME ; edited by Thomas L. Geers, Pin Tong
出版情報: New York, N.Y. : American Society of Mechanical Engineers, c1979  v, 189 p. ; 26 cm
シリーズ名: AMD ; vol. 36
所蔵情報: loading…
2.

図書

図書
Y.C. Fung, Pin Tong
出版情報: Singapore : World Scientific, c2001  xx, 930 p. ; 24 cm
シリーズ名: Advanced series in engineering science ; v. 1
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Hooke's Law / 1.1.:
Linear Solids with Memory / 1.2.:
Sinusoidal Oscillations in Viscoelastic Material: Models of Viscoelasticity / 1.3.:
Plasticity / 1.4.:
Vibrations / 1.5.:
Prototype of Wave Dynamics / 1.6.:
Biomechanics / 1.7.:
Historical Remarks / 1.8.:
Tensor Analysis / 2:
Notation and Summation Convention / 2.1.:
Coordinate Transformation / 2.2.:
Euclidean Metric Tensor / 2.3.:
Scalars, Contravariant Vectors, Covariant Vectors / 2.4.:
Tensor Fields of Higher Rank / 2.5.:
Some Important Special Tensors / 2.6.:
The Significance of Tensor Characteristics / 2.7.:
Rectangular Cartesian Tensors / 2.8.:
Contraction / 2.9.:
Quotient Rule / 2.10.:
Partial Derivatives in Cartesian Coordinates / 2.11.:
Covariant Differentiation of Vector Fields / 2.12.:
Tensor Equations / 2.13.:
Geometric Interpretation of Tensor Components / 2.14.:
Geometric Interpretation of Covariant Derivatives / 2.15.:
Physical Components of a Vector / 2.16.:
Stress Tensor / 3:
Stresses / 3.1.:
Laws of Motion / 3.2.:
Cauchy's Formula / 3.3.:
Equations of Equilibrium / 3.4.:
Transformation of Coordinates / 3.5.:
Plane State of Stress / 3.6.:
Principal Stresses / 3.7.:
Shearing Stresses / 3.8.:
Mohr's Circles / 3.9.:
Stress Deviations / 3.10.:
Octahedral Shearing Stress / 3.11.:
Stress Tensor in General Coordinates / 3.12.:
Physical Components of a Stress Tensor in General Coordinates / 3.13.:
Equations of Equilibrium in Curvilinear Coordinates / 3.14.:
Analysis of Strain / 4:
Deformation / 4.1.:
Strain Tensors in Rectangular Cartesian Coordinates / 4.2.:
Geometric Interpretation of Infinitesimal Strain Components / 4.3.:
Rotation / 4.4.:
Finite Strain Components / 4.5.:
Compatibility of Strain Components / 4.6.:
Multiply Connected Regions / 4.7.:
Multivalued Displacements / 4.8.:
Properties of the Strain Tensor / 4.9.:
Physical Components / 4.10.:
Example--Spherical Coordinates / 4.11.:
Example--Cylindrical Polar Coordinates / 4.12.:
Conservation Laws / 5:
Gauss' Theorem / 5.1.:
Material and Spatial Descriptions of Changing Configurations / 5.2.:
Material Derivative of Volume Integral / 5.3.:
The Equation of Continuity / 5.4.:
Equations of Motion / 5.5.:
Moment of Momentum / 5.6.:
Other Field Equations / 5.7.:
Elastic and Plastic Behavior of Materials / 6:
Generalized Hooke's Law / 6.1.:
Stress-Strain Relationship for Isotropic Elastic Materials / 6.2.:
Ideal Plastic Solids / 6.3.:
Some Experimental Information / 6.4.:
A Basic Assumption of the Mathematical Theory of Plasticity / 6.5.:
Loading and Unloading Criteria / 6.6.:
Isotropic Stress Theories of Yield Function / 6.7.:
Further Examples of Yield Functions / 6.8.:
Work Hardening--Drucker's Hypothesis and Definition / 6.9.:
Ideal Plasticity / 6.10.:
Flow Rule for Work-Hardening Materials / 6.11.:
Subsequent Loading Surfaces--Isotropic and Kinematic Hardening Rules / 6.12.:
Mroz's, Dafalias and Popov's, and Valanis' Plasticity Theories / 6.13.:
Strain Space Formulations / 6.14.:
Finite Deformation / 6.15.:
Plastic Deformation of Crystals / 6.16.:
Linearized Theory of Elasticity / 7:
Basic Equations of Elasticity for Homogeneous Isotropic Bodies / 7.1.:
Equilibrium of an Elastic Body Under Zero Body Force / 7.2.:
Boundary Value Problems / 7.3.:
Equilibrium and Uniqueness of Solutions / 7.4.:
Saint Venant's Theory of Torsion / 7.5.:
Soap Film Analogy / 7.6.:
Bending of Beams / 7.7.:
Plane Elastic Waves / 7.8.:
Rayleigh Surface Wave / 7.9.:
Love Wave / 7.10.:
Solutions of Problems in Linearized Theory of Elasticity by Potentials / 8:
Scalar and Vector Potentials for Displacement Vector Fields / 8.1.:
Equations of Motion in Terms of Displacement Potentials / 8.2.:
Strain Potential / 8.3.:
Galerkin Vector / 8.4.:
Equivalent Galerkin Vectors / 8.5.:
Example--Vertical Load on the Horizontal Surface of a Semi-Infinite Solid / 8.6.:
Love's Strain Function / 8.7.:
Kelvin's Problem--A Single Force Acting in the Interior of an Infinite Solid / 8.8.:
Perturbation of Elasticity Solutions by a Change of Poisson's Ratio / 8.9.:
Boussinesq's Problem / 8.10.:
On Biharmonic Functions / 8.11.:
Neuber-Papkovich Representation / 8.12.:
Other Methods of Solution of Elastostatic Problems / 8.13.:
Reflection and Refraction of Plane P and S Waves / 8.14.:
Lamb's Problem--Line Load Suddenly Applied on Elastic Half-Space / 8.15.:
Two-Dimensional Problems in Linearized Theory of Elasticity / 9:
Plane State of Stress or Strain / 9.1.:
Airy Stress Functions for Two-Dimensional Problems / 9.2.:
Airy Stress Function in Polar Coordinates / 9.3.:
General Case / 9.4.:
Representation of Two-Dimensional Biharmonic Functions by Analytic Functions of a Complex Variable / 9.5.:
Kolosoff-Muskhelishvili Method / 9.6.:
Variational Calculus, Energy Theorems, Saint-Venant's Principle / 10:
Minimization of Functionals / 10.1.:
Functional Involving Higher Derivatives of the Dependent Variable / 10.2.:
Several Unknown Functions / 10.3.:
Several Independent Variables / 10.4.:
Subsidiary Conditions--Lagrangian Multipliers / 10.5.:
Natural Boundary Conditions / 10.6.:
Theorem of Minimum Potential Energy Under Small Variations of Displacements / 10.7.:
Example of Application: Static Loading on a Beam--Natural and Rigid End Conditions / 10.8.:
The Complementary Energy Theorem Under Small Variations of Stresses / 10.9.:
Variational Functionals Frequently Used in Computational Mechanics / 10.10.:
Saint-Venant's Principle / 10.11.:
Saint-Venant's Principle-Boussinesq-Von Mises-Sternberg Formulation / 10.12.:
Practical Applications of Saint-Venant's Principle / 10.13.:
Extremum Principles for Plasticity / 10.14.:
Limit Analysis / 10.15.:
Hamilton's Principle, Wave Propagation, Applications of Generalized Coordinates / 11:
Hamilton's Principle / 11.1.:
Example of Application--Equation of Vibration of a Beam / 11.2.:
Group Velocity / 11.3.:
Hopkinson's Experiment / 11.4.:
Generalized Coordinates / 11.5.:
Approximate Representation of Functions / 11.6.:
Approximate Solution of Differential Equations / 11.7.:
Direct Methods of Variational Calculus / 11.8.:
Elasticity and Thermodynamics / 12:
The Laws of Thermodynamics / 12.1.:
The Energy Equation / 12.2.:
The Strain Energy Function / 12.3.:
The Conditions of Thermodynamic Equilibrium / 12.4.:
The Positive Definiteness of the Strain Energy Function / 12.5.:
Thermodynamic Restrictions on the Stress-Strain Law of an Isotropic Elastic Material / 12.6.:
Generalized Hooke's Law, Including the Effect of Thermal Expansion / 12.7.:
Thermodynamic Functions for Isotropic Hookean Materials / 12.8.:
Equations Connecting Thermal and Mechanical Properties of a Solid / 12.9.:
Irreversible Thermodynamics and Viscoelasticity / 13:
Basic Assumptions / 13.1.:
One-Dimensional Heat Conduction / 13.2.:
Phenomenological Relations-Onsager Principle / 13.3.:
Basic Equations of Thermomechanics / 13.4.:
Equations of Evolution for a Linear Hereditary Material / 13.5.:
Relaxation Modes / 13.6.:
Normal Coordinates / 13.7.:
Hidden Variables and the Force-Displacement Relationship / 13.8.:
Anisotropic Linear Viscoelastic Materials / 13.9.:
Thermoelasticity / 14:
Basic Equations / 14.1.:
Thermal Effects Due to a Change of Strain; Kelvin's Formula / 14.2.:
Ratio of Adiabatic to Isothermal Elastic Moduli / 14.3.:
Uncoupled, Quasi-Static Thermoelastic Theory / 14.4.:
Temperature Distribution / 14.5.:
Thermal Stresses / 14.6.:
Particular Integral: Goodier's Method / 14.7.:
Plane Strain / 14.8.:
An Example--Stresses in a Turbine Disk / 14.9.:
Variational Principle for Uncoupled Thermoelasticity / 14.10.:
Variational Principle for Heat Conduction / 14.11.:
Coupled Thermoelasticity / 14.12.:
Lagrangian Equations for Heat Conduction and Thermoelasticity / 14.13.:
Viscoelasticity / 15:
Viscoelastic Material / 15.1.:
Stress-Strain Relations in Differential Equation Form / 15.2.:
Boundary-Value Problems and Integral Transformations / 15.3.:
Waves in an Infinite Medium / 15.4.:
Quasi-Static Problems / 15.5.:
Reciprocity Relations / 15.6.:
Large Deformation / 16:
Coordinate Systems and Tensor Notation / 16.1.:
Deformation Gradient / 16.2.:
Strains / 16.3.:
Right and Left Stretch Strain and Rotation Tensors / 16.4.:
Strain Rates / 16.5.:
Material Derivatives of Line, Area, and Volume Elements / 16.6.:
Example: Combined Tension and Torsion Loads / 16.7.:
Objectivity / 16.9.:
Constitutive Equations of Thermoelastic Bodies / 16.10.:
More Examples / 16.12.:
Variational Principles for Finite Elasticity: Compressible Materials / 16.13.:
Variational Principles for Finite Elasticity: Nearly Incompressible or Incompressible Materials / 16.14.:
Small Deflection of Thin Plates / 16.15.:
Large Deflection of Plates / 16.16.:
Incremental Approach to Solving Some Nonlinear Problems / 17:
Updated Lagrangian Description / 17.1.:
Linearized Rates of Deformation / 17.2.:
Linearized Rates of Stress Measures / 17.3.:
Incremental Equations of Motion / 17.4.:
Constitutive Laws / 17.5.:
Incremental Variational Principles in Terms of T / 17.6.:
Incremental Variational Principles in Terms of r / 17.7.:
Incompressible and Nearly Incompressible Materials / 17.8.:
Updated Solution / 17.9.:
Incremental Loads / 17.10.:
Infinitesimal Strain Theory / 17.11.:
Finite Element Methods / 18:
Basic Approach / 18.1.:
One Dimensional Problems Governed by a Second Order Differential Equation / 18.2.:
Shape Functions and Element Matrices for Higher Order Ordinary Differential Equations / 18.3.:
Assembling and Constraining Global Matrices / 18.4.:
Equation Solving / 18.5.:
Two Dimensional Problems by One-Dimensional Elements / 18.6.:
General Finite Element Formulation / 18.7.:
Convergence / 18.8.:
Two-Dimensional Shape Functions / 18.9.:
Element Matrices for a Second-Order Elliptical Equation / 18.10.:
Triangular Elements with Curved Sides / 18.11.:
Quadrilateral Elements / 18.13.:
Plane Elasticity / 18.14.:
Three-Dimensional Shape Functions / 18.15.:
Three Dimensional Elasticity / 18.16.:
Dynamic Problems of Elastic Solids / 18.17.:
Numerical Integration / 18.18.:
Patch Tests / 18.19.:
Locking-Free Elements / 18.20.:
Spurious Modes in Reduced Integration / 18.21.:
Perspective / 18.22.:
Mixed and Hybrid Formulations / 19:
Mixed Formulations / 19.1.:
Hybrid Formulations / 19.2.:
Hybrid Singular Elements (Super-Elements) / 19.3.:
Elements for Heterogeneous Materials / 19.4.:
Elements for Infinite Domain / 19.5.:
Incompressible or Nearly Incompressible Elasticity / 19.6.:
Finite Element Methods for Plates and Shells / 20:
Linearized Bending Theory of Thin Plates / 20.1.:
Reissner-Mindlin Plates / 20.2.:
Mixed Functionals for Reissner Plate Theory / 20.3.:
Hybrid Formulations for Plates / 20.4.:
Shell as an Assembly of Plate Elements / 20.5.:
General Shell Elements / 20.6.:
Locking and Stabilization in Shell Applications / 20.7.:
Finite Element Modeling of Nonlinear Elasticity, Viscoelasticity, Plasticity, Viscoplasticity and Creep / 21:
Updated Lagrangian Solution for Large Deformation / 21.1.:
Incremental Solution / 21.2.:
Dynamic Solution / 21.3.:
Newton-Raphson Iteration Method / 21.4.:
Viscoplasticity / 21.5.:
Creep / 21.8.:
Bibliography
Author Index
Subject Index
Introduction / 1:
Hooke's Law / 1.1.:
Linear Solids with Memory / 1.2.:
3.

図書

図書
co-sponsored by the Transportation Committee of the Applied Mechanics Division and the Solid Mechanics Committee of the Bioengineering Division, ASME ; edited by P. Tong ... [et al.]
出版情報: New York, N.Y. (345 E. 47th St., New York 10017) : ASME, c1986  v, 158 p. ; 26 cm
シリーズ名: AMD ; vol. 79
BED ; vol. 1
所蔵情報: loading…
4.

図書

図書
Y.C. Fung, Pin Tong, Xiaohong Chen
出版情報: Singapore : World Scientific, c2017  xxi, 838 p. ; 23 cm
シリーズ名: Advanced series in engineering science ; v. 2
所蔵情報: loading…
5.

図書

図書
editors, P. Tong, T. Y. Zhang and J. K. Kim
出版情報: Zuerich : Trans Tech Pub., c1998  xxxv, 619 p. ; 25 cm
シリーズ名: Key engineering materials ; v. 145-149 . Fracture and strength of Solids : proceedings of the Third International Conference on Fracture and Strength of Solids, Hong Kong, December 8-10, 1997 ; pt. 1
所蔵情報: loading…
6.

図書

図書
editors, P. Tong, T. Y. Zhang and J. K. Kim
出版情報: Zuerich : Trans Tech Pub., c1998  xxii, 621-1191 p. ; 25 cm
シリーズ名: Key engineering materials ; v. 145-149 . Fracture and strength of Solids : proceedings of the Third International Conference on Fracture and Strength of Solids, Hong Kong, December 8-10, 1997 ; pt. 2
所蔵情報: loading…
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼