close
1.

図書

図書
Horst Weber chair editor ; sponsored by EPS--European Physical Society, Europtica--the European Federation for Applied Optics, SPIE--the International Society for Optical Engineering
出版情報: Bellingham, Wash. : SPIE--the International Society for Optical Engineering, c1989  viii, 199 p ; 28 cm
シリーズ名: Proceedings / SPIE -- the International Society for Optical Engineering ; v. 1021
所蔵情報: loading…
2.

図書

図書
editors, H. Weber, G. Herziger, R. Poprawe ; authors, H.J. Eichler ... [et al.]
出版情報: Berlin : Springer, c2005-  v. ; 28 cm.
シリーズ名: Landolt-Börnstein Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie / Gesamtherausgabe, K.-H. Hellwege ; New series, Group 8 . Advanced materials and technologies ; v. 1 . Laser physics and applications ; Subvol. A
所蔵情報: loading…
目次情報: 続きを見る
Quantum optics / Part 5:
Introduction / F. Haug ; M. Freyberger ; K. Vogel ; W.P. Schleich5.1:
A brief history of quantum optics / 5.1.1.1:
Outline of the review / 5.1.1.2:
Field quantization in Coulomb gauge / 5.1.2:
Mode expansion / 5.1.2.1:
Running waves / 5.1.2.1.1:
Standing waves / 5.1.2.1.2:
Energy of the radiation field / 5.1.2.1.3:
Field quantization / 5.1.2.2:
Single mode / 5.1.2.3:
Field states / 5.1.3:
Pure and mixed states / 5.1.3.1:
Photon number states / 5.1.3.2:
Coherent states / 5.1.3.3:
Squeezed states / 5.1.3.4:
Thermal states / 5.1.3.5:
Measures of non-classicality / 5.1.3.6:
Mandel Q-parameter / 5.1.3.6.1:
Glauber-Sudarshan distribution / 5.1.3.6.2:
Atom-field interaction / 5.1.4:
Electric field-dipole interaction / 5.1.4.1:
Simple model for atom-field interaction / 5.1.4.2:
Hamiltonian / 5.1.4.2.1:
Dynamics of Jaynes-Cummings-Paul model / 5.1.4.2.2:
Quantum motion in an ion trap / 5.1.4.2.3:
Quantum state engineering / 5.1.4.3:
Resonant case: photon number state preparation / 5.1.4.3.1:
Far off-resonant case: Schrödinger cat state preparation / 5.1.4.3.2:
Reservoir theory / 5.1.5:
Master equation / 5.1.5.1:
Mathematics of the model / 5.1.5.1.1:
Methods of solution / 5.1.5.1.2:
Damping and amplification / 5.1.5.2:
Decoherence / 5.1.5.3:
One-atom maser / 5.1.6:
Steady-state photon statistics / 5.1.6.1:
Atom-reservoir interaction / 5.1.7:
Lamb shift / 5.1.7.1:
Weisskopf-Wigner decay / 5.1.7.3:
Resonance fluorescence / 5.1.8:
Model / 5.1.8.1:
Spectrum and antibunching / 5.1.8.2:
Fundamental questions of quantum mechanics / 5.1.9:
Quantum jumps / 5.1.9.1:
Continuous versus discontinuous dynamics / 5.1.9.1.1:
Experimental observation / 5.1.9.1.2:
Wave-particle duality / 5.1.9.2:
Delayed choice experiments / 5.1.9.2.1:
Quantum-optical tests of complementarity / 5.1.9.2.2:
Entanglement / 5.1.9.3:
Bell inequality / 5.1.9.4:
New frontiers / 5.1.10:
Atom optics in quantized fields / 5.1.10.1:
Bose-Einstein condensation / 5.1.10.2:
History / 5.1.10.2.1:
Bose-Einstein condensation in dilute atomic gases / 5.1.10.2.2:
Gross-Pitaevskii equation / 5.1.10.2.3:
Experiments with Bose-Einstein condensates / 5.1.10.2.4:
Quantum information / 5.1.10.3:
Quantum teleportation / 5.1.10.3.1:
Quantum cryptography / 5.1.10.3.2:
References for 5.1
Coherence and superradiance / Part 6:
Coherence / W. Martienssen ; H. Paul6.1:
Historical remarks / 6.1.1:
Basic concepts / 6.1.2:
Classical light / 6.1.2.1:
Non-classical light / 6.1.2.2:
Field mode / 6.1.2.3:
Single-mode field / 6.1.2.4:
Electric field strength / 6.1.2.5:
Interference / 6.1.2.6:
Coherence theory / 6.1.2.7:
Field correlation functions / 6.1.3.1:
Definitions / 6.1.3.1.1:
Connections between correlation functions of different order / 6.1.3.1.2:
First-order coherence / 6.1.3.2:
Degree of coherence / 6.1.3.2.1:
Temporal coherence / 6.1.3.2.2:
Spatial coherence / 6.1.3.2.3:
Filtering out coherent light from a chaotic source / 6.1.3.2.4:
Measurement of coherence lengths / 6.1.3.2.5:
Laser light versus chaotic light / 6.1.3.3:
Generating mechanisms and radiation characteristics / 6.1.3.3.1:
Chaotic light / 6.1.3.3.1.1:
Laser light / 6.1.3.3.1.2:
Interference between beams from independent sources / 6.1.3.3.2:
Coherent interaction / 6.1.3.3.3:
Particle interference / 6.1.3.4:
Higher-order coherence / 6.1.3.5:
Intensity interference / 6.1.4:
Formal description / 6.1.4.1:
Measurement / 6.1.4.2:
Spatial intensity correlations / 6.1.4.3:
Stellar intensity interferometry / 6.1.4.3.1:
Temporal intensity correlations / 6.1.4.4:
Amplitude stabilization / 6.1.4.4.1:
Photon bunching / 6.1.4.4.2:
Photon antibunching / 6.1.4.4.3:
Experiments with entangled photon pairs / 6.1.4.5:
Parametric down-conversion / 6.1.4.5.1:
Two-photon mixing / 6.1.4.5.2:
Hong-Ou-Mandel interferometer / 6.1.4.5.2.1:
Photon-pair interference / 6.1.4.5.3:
Interferometric devices / 6.1.4.5.3.1:
Franson experiment / 6.1.4.5.3.2:
Photon counting statistics / 6.1.5:
Photon distribution functions / 6.1.5.1:
Measurements under different experimental conditions / 6.1.5.3:
Variances of the photon number / 6.1.5.4:
References for 6.1
Superradiance / M.G. Benedict ; E.D. Trifonov6.2:
Definitions and historical layout / 6.2.1:
Superradiance theory / 6.2.2:
Superradiance of a system with dimensions smaller than the radiation wavelength / 6.2.2.1:
Superradiation of an extended multiatomic system / 6.2.2.2:
Superradiance experiments / 6.2.3:
A microscopic observation of superradiance and subradiance / 6.2.3.1:
Superradiance experiments in pencil-shaped macroscopic samples / 6.2.3.2:
Superradiant-type Rayleigh scattering from a Bose-Einstein condensate / 6.2.3.3:
Outlook / 6.2.4:
References for 6.2
Optical components / Part 7:
Modulators / B. Kuhlow7.1:
Light propagation in crystals / 7.1.1:
Linear electro-optic effect / 7.1.3:
Modulator devices / 7.1.3.1:
Phase modulation / 7.1.3.1.1:
Polarization modulation (dynamic retardation) / 7.1.3.1.2:
Amplitude modulation / 7.1.3.1.3:
Design considerations / 7.1.3.1.4:
Traveling-wave modulator / 7.1.3.2:
Examples / 7.1.3.3:
Crystal classes / 7.1.3.3.1:
Crystal class <$>\bar {4}<$>2m / 7.1.3.3.1.1:
Crystal class 3m / 7.1.3.3.1.2:
Crystal class <$>\bar {4}<$>3m / 7.1.3.3.1.3:
Selected electro-optic materials and modulator systems / 7.1.3.3.2:
Electro-optic beam deflector / 7.1.3.4:
Kerr electro-optic effect modulators / 7.1.4:
Kerr effect in isotropic media / 7.1.4.1:
Acousto-optic modulators / 7.1.5:
The photoelastic effect / 7.1.5.1:
Interaction regimes / 7.1.5.2:
Raman-Nath regime / 7.1.5.2.1:
Bragg regime / 7.1.5.2.2:
Isotropic interaction / 7.1.5.2.2.1:
Anisotropic interaction / 7.1.5.2.2.2:
Efficiency / 7.1.5.2.2.3:
Bandwidth / 7.1.5.2.2.4:
Acousto-optic intensity modulator / 7.1.5.3:
Acousto-optic deflector / 7.1.5.4:
Glossary / 7.1.6:
References for 7.1
Thin-film technology / D. Ristau7.2:
Basic principle of optical thin-film systems / 7.2.1:
Production of optical coatings / 7.2.3:
Quality parameters of optical laser components / 7.2.4:
Measurement of critical parameters of laser components / 7.2.5:
Calorimetric measurement of absorption / 7.2.5.1:
Measurement of total scattering / 7.2.5.2:
Laser-induced damage thresholds / 7.2.5.3:
Quality parameters of laser components: present state / 7.2.5.4:
Examples for advanced laser components / 7.2.6:
Summary and future trends / 7.2.7:
References for 7.2
Beam shaping / M. Scholl7.3:
Beam-shaping techniques and design procedures / 7.3.1:
Beam transformation / 7.3.2.1:
Coherent beams / 7.3.2.1.1:
Partially coherent beams and geometric optic approximation / 7.3.2.1.2:
Comparison of the geometric-optical solution with the solution from the coherent techniques / 7.3.2.1.3:
Beam integration / 7.3.2.2:
Beam integration with beamlet shaping / 7.3.2.3:
Beam shaping and coherence / 7.3.2.4:
Beam splitting / 7.3.2.5:
Manufacturing of beam-shaping elements / 7.3.2.6:
Conclusion / 7.3.3:
References for 7.3
Optical resonators / Part 8:
Linear stable resonators / N. Hodgson8.1:
Linear unstable resonators / 8.1.1.2:
Ring resonators / 8.1.1.3:
Waveguide resonators / 8.1.1.4:
Reviewing the basic properties of all optical resonators / 8.1.1.5:
Classification of optical resonators / 8.1.2:
Unconfined stable resonators / 8.1.3:
Transverse mode structures / 8.1.3.1:
Gauss-Laguerre and Gauss-Hermite modes / 8.1.3.1.1:
Hybrid modes / 8.1.3.1.2:
Beam propagation of stable resonator modes / 8.1.3.2:
Fundamental mode / 8.1.3.2.1:
Higher-order modes / 8.1.3.2.2:
Beam quality and resonator parameters / 8.1.3.3:
Resonance frequencies / 8.1.3.4:
Aperture-limited stable resonators / 8.1.4:
Resonators with one aperture / 8.1.4.1:
Resonators with two apertures / 8.1.4.2:
Misalignment sensitivity / 8.1.5:
Fundamental-mode operation / 8.1.5.1:
Multimode operation / 8.1.5.2:
Unstable resonators / 8.1.6:
Beam propagation / 8.1.6.1:
Characterization of unstable resonators / 8.1.6.1.1:
Resonator schemes / 8.1.6.1.2:
Mode structures and losses / 8.1.6.2:
Beam quality / 8.1.6.3:
Circular symmetry / 8.1.6.3.1:
Rectangular symmetry / 8.1.6.3.2:
Unstable resonators with variable-reflectivity mirrors / 8.1.6.4:
Applications of unstable resonators / 8.1.6.5:
Output power of stable resonators / 8.1.7:
Calculation of the output power of stable resonators / 8.1.7.1:
Optimum output coupling and maximum output power / 8.1.7.2:
Homogeneous line broadening / 8.1.7.2.1:
Inhomogeneous line broadening / 8.1.7.2.2:
Thermal lensing in solid-state lasers / 8.1.8:
Transverse multimode operation / 8.1.8.1:
General properties of ring resonators / 8.1.9:
Unstable ring resonators / 8.1.9.2:
Nonplanar ring resonators / 8.1.9.3:
Motivation / 8.1.10:
Eigenmodes of hollow rectangular waveguides / 8.1.10.2:
Properties of waveguide resonators / 8.1.10.3:
Waveguide resonator configurations / 8.1.10.3.1:
Case I resonators / 8.1.10.3.1.1:
Case II resonators / 8.1.10.3.1.2:
Case III resonators / 8.1.10.3.1.3:
Calculated round-trip losses of the lowest-loss resonator mode / 8.1.10.3.2:
Mode properties of a general waveguide resonator / 8.1.10.3.3:
Waveguide resonator mode and loss calculations / 8.1.10.4:
Properties of slab waveguide lasers / 8.1.10.5:
References for 8.1
Interferometry / Part 9:
Basic principles of interference / H.J. Tiziani ; N. Kerwien ; G. Pedrini9.1:
Two-beam interference / 9.1.2.1:
Interference in a plane-parallel plate / 9.1.2.3:
Vector effects of interference / 9.1.2.4:
Interferometry for optical testing / 9.1.3:
Basic interferometer types / 9.1.3.1:
Michelson interferometer / 9.1.3.1.1:
Twyman-Green interferometer / 9.1.3.1.2:
Fizeau interferometer / 9.1.3.1.3:
Mach-Zehnder interferometer / 9.1.3.1.4:
Shearing interferometry / 9.1.3.1.5:
Fabry-Perot interferometer / 9.1.3.1.6:
Quantitative electronic phase evaluation techniques / 9.1.3.2:
The Fourier-transform technique / 9.1.3.2.1:
Fringe analysis by phase shifting / 9.1.3.2.2:
Phase-locked interferometry / 9.1.3.2.3:
Interferometry for surface metrology / 9.1.4:
Interferometry with extended range and reduced sensitivity: Oblique incidence interferometry / 9.1.4.1:
Prismatic interferometer with oblique incidence / 9.1.4.1.1:
Grating interferometer with oblique incidence / 9.1.4.1.2:
Multiwavelength interferometry / 9.1.4.2:
White-light interferometry / 9.1.4.3:
Polarization interferometry / 9.1.4.4:
Heterodyne interferometry for velocity and distance measurement / 9.1.5:
Principle of heterodyne interferometry / 9.1.5.1:
Absolute heterodyne interferometry: Double heterodyne interferometry (DHI) / 9.1.5.2:
Interferometry with adaptive optics / 9.1.6:
Interferometry with a null corrector / 9.1.6.1:
Adaptive optics with optical light modulator / 9.1.6.2:
Adaptive optics with deformable membrane mirror / 9.1.6.3:
Adaptive optics for optical stitching using dynamically tilted reference wave / 9.1.6.4:
Speckle pattern interferometry / 9.1.7:
Some properties of speckles / 9.1.7.1:
Speckle applications / 9.1.7.2:
Speckle pattern interferometry for deformation measurements / 9.1.7.3:
Phase analysis in speckle interferometry / 9.1.7.4:
Phase analysis by phase stepping / 9.1.7.4.1:
Phase analysis by spatial phase shifting / 9.1.7.4.2:
Analysis of vibrating objects / 9.1.7.4.3:
Temporal speckle pattern interferometry (TSPI) / 9.1.7.5:
Shape measurement with TSPI by using time-varying wavelength change / 9.1.7.5.1:
Laser diode with external cavity for wavelength change / 9.1.7.5.2:
Application of TSPI for deformation measurement / 9.1.7.5.3:
Deformation measurements by TSPI and digital holography, a comparison / 9.1.7.5.4:
Vibration measurement with TSPI / 9.1.7.5.5:
Holographic interferometry / 9.1.8:
Principle of holography / 9.1.8.1:
Principle of holographic interferometry / 9.1.8.2:
Digital holography / 9.1.8.3:
Principle of digital holography / 9.1.8.3.1:
Configurations for recording and reconstruction of digital holograms / 9.1.8.3.2:
Lensless Fourier hologram / 9.1.8.3.2.1:
Fresnel hologram / 9.1.8.3.2.2:
Image-plane hologram / 9.1.8.3.2.3:
Digital holographic interferometry / 9.1.8.4:
Principle of digital holographic interferometry / 9.1.8.4.1:
Digital holographic interferometry for dynamic deformations / 9.1.8.4.2:
Dimensional measurements / 9.1.8.4.2.1:
Digital holographic interferometry for deformation and vibration analysis of 3D objects / 9.1.8.4.2.2:
Pulsed digital holographic interferometry for endoscopic investigations / 9.1.8.4.3:
Temporal phase unwrapping of digital holograms / 9.1.8.4.4:
References for 9.1
Index
Fundamentals of light-matter interaction: Fundamentals of the semiclassical laser theory.
Radiometry: Definition and measurement of radiometric quantities.
Beam characterization.
Linear optics.
Nonlinear optics: Frequency conversion in crystals.
Frequency conversion in gases and liquids.
Stimulated scattering.
Phase conjugation.
Index.
Quantum optics / Part 5:
Introduction / F. Haug ; M. Freyberger ; K. Vogel ; W.P. Schleich5.1:
A brief history of quantum optics / 5.1.1.1:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼