close
1.

図書

図書
Audric Garcia and Ciel Durand, editors
出版情報: New York : Nova Science Publishers, c2010  xi, 218 p. ; 27 cm
シリーズ名: Biotechnology in agriculture, industry and medicine
所蔵情報: loading…
目次情報: 続きを見る
Preface
Bioengineering Approaches for Aetiological Research in Severe Pressure Ulcers
Ion Beam Bioengineering Research in Thailand
Analysis of Shell Structures Applying Triangular Finite Elements
Bioengineering of Human Fetal Tissues for Clinical Use
Gene Cluster or Operon Design by Ordered Gene Assembly in Bacillus subtilis (OGAB) Method
Bioengineering of Glass-Ceramics & Ceramics for Dental Restoration
Development of a Diagnostic System for Osteoarthritis Using a Photoacoustic Measurement Method & Time-Resolved Auto-Fluorescence
Biotechnology & Agriculture
Index
Preface
Bioengineering Approaches for Aetiological Research in Severe Pressure Ulcers
Ion Beam Bioengineering Research in Thailand
2.

図書

図書
edited by Challa S. S. R. Kumar
出版情報: Weinheim : Wiley-VCH, c2010  xx, 445 p. ; 25 cm
シリーズ名: Nanomaterials for the life sciences / edited by Challa S.S.R. Kumar ; v. 8
所蔵情報: loading…
3.

図書

図書
Kal Renganathan Sharma
出版情報: New York : McGraw-Hill, c2010  xvii, 488 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Fundamentals of Fluid Mechanics / Chapter 1:
Principles of Diffusion / Chapter 2:
Osmotic Pressure, Solvent Permeability, and Solute Transport / Chapter 3:
Rheology of Blood and Transport / Chapter 4:
Gas Transport / Chapter 5:
Pharmacokinetic Study / Chapter 6:
Tissue Design / Chapter 7:
Bioartificial Organ Design / Chapter 8:
Bioheat Transport / Chapter 9:
Generalized Bessel Differential Equation / Appendix A:
Inverse of Laplace Transforms / Appendix B:
Fundamentals of Fluid Mechanics / Chapter 1:
Principles of Diffusion / Chapter 2:
Osmotic Pressure, Solvent Permeability, and Solute Transport / Chapter 3:
4.

図書

図書
edited by Challa S.S.R. Kumar
出版情報: Weinheim : Wiley-VCH, c2006  xviii, 395 p. ; 25 cm
シリーズ名: Nanotechnologies for the life sciences ; v. 3
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Contributors
Fluorescence Imaging in Biology using Nanoprobes / Daniele Gerion1:
Introduction and Outlook / 1.1:
A New Era in Cell Biology / 1.1.1:
Manotechnology and its Perspectives for Fluorescence Imaging in Cell Biology / 1.1.2:
Fundamentals of Fluorescence / 1.2:
Basic Principles / 1.2.1:
A Few Types of Fluorescent Probes / 1.2.2:
Small Luminescent Units and Autofluorescence of Living Organisms / 1.2.2.1:
A few Organic Dyes and their Limitation in Live Cell Labeling / 1.2.2.2:
Green Fluorescent Protein and its Cousin Mutants / 1.2.2.3:
Quantum Dots / 1.2.2.4:
Toxicity Issues of Nanomaterials / 1.2.2.5:
Sources and Detectors / 1.2.3:
Light Sources / 1.2.3.1:
Detectors / 1.2.3.2:
Microscope Configurations / 1.3:
Wide-field Methods: Epi-, and Total Internal Reflection (TIR) / 1.3.1:
Epifluorescence Illumination / 1.3.1.1:
Total Internal Reflection (TIR) Illumination / 1.3.1.2:
Scanning Methods for Microscopy / 1.3.2:
Laser-scanning or Stage-scanning Confocal Microscopy / 1.3.2.1:
Near-field Scanning Optical Microscopy (NSOM) / 1.3.2.2:
Strategies for Image Acquisition / 1.4:
Intensity Imaging / 1.4.1:
Spectral Imaging / 1.4.2:
Lifetime and Time-gated Imaging / 1.4.3:
Other Imaging Modalities: Polarization and FRET Imaging / 1.4.4:
Qdots in Biology: A Few Selected Examples / 1.5:
Ultra-high Colocalization of Qdots for Genetic Mapping / 1.5.1:
Dynamics of Biomolecules in a Cellular Environment / 1.5.2:
Trafficking of Glycine Receptors in Neural Membranes of Live Cells / 1.5.2.1:
Dynamics of Labeled Nuclear Localization Sequences Inside Living Cells / 1.5.2.2:
In Vivo and Non-invasive Detection Using Qdot Reporters / 1.5.3:
Outlook: Is there a Role for Nanoscience in Cellular Biology and in Medicine? / 1.6:
Acknowledgments
References
Characterization of Nanoscale Systems in Biology using Scanning Probe Microscopy Techniques / Anthony W. Coleman ; Adina N. Lazar ; Cecile F. Rousseau ; Sebastien Cecillon ; Patrick Shahgaldian2:
Introduction / 2.1:
The Scanning Probe Microscopy Experiment / 2.2:
Scanning Tunneling Microscopy Imaging / 2.3:
Atomic Force Microscopy / 2.4:
Generalities / 2.4.1:
Tips and Cantilevers / 2.4.2:
Contact Mode AFM / 2.4.3:
Dynamic Modes / 2.4.4:
Non-contact Mode / 2.4.4.1:
Intermittent Contact Mode / 2.4.4.3:
Force Modulation Mode / 2.4.4.4:
Friction Force Mode or Lateral Force Mode / 2.4.5:
Force-Distance Analysis / 2.4.6:
Chemical Force Imaging / 2.4.7:
Dip-pen Lithography / 2.4.8:
Cantilever Array Sensors / 2.4.9:
Near-field Scanning Optical Microscopy / 2.5:
Artifacts / 2.6:
Artifacts Related to Tip Size and Geometry / 2.6.1:
Artifacts from Damaged Tips / 2.6.2:
Artifacts from Tip-Sample Interactions / 2.6.3:
Sample Artifacts / 2.6.4:
Using the Tools / 2.7:
DNA / 2.7.1:
Topographic Imaging of DNA / 2.7.1.1:
Imaging DNA Translocation / 2.7.1.2:
DNA Interactions and Stretching / 2.7.1.3:
Proteins / 2.7.2:
Topographic Imaging of Proteins / 2.7.2.1:
Dip-pen Nanolithography Patterning of Proteins / 2.7.2.2:
Protein-Protein and Protein-Ligand Interactions / 2.7.2.3:
Polysaccharides / 2.7.3:
Proteoglycan Topographic Imaging / 2.7.3.1:
Lipid Systems / 2.7.4:
Liposomes / 2.7.4.1:
Solid Lipid Nanoparticles (SLNs) / 2.7.4.2:
Supported Lipid Bilayers and Monolayers / 2.7.4.3:
SNOM Imaging / 2.7.5:
Viruses / 2.7.6:
Cells / 2.7.7:
Topographic Imaging / 2.7.7.1:
Interactions and Mechanical Properties / 2.7.7.2:
NSOM Imaging / 2.7.7.3:
Cantilever Arrays as Biosensors / 2.7.8:
Conclusion / 2.8:
Books on Scanning Probe Microsopies Reviews on Scanning Probe Microsopies in Biology / Appendix 1:
Reviews on Scanning Probe Microsopies in Biology / Appendix 2:
Quartz Crystal Microbalance Characterization of Nanostructure Assemblies in Biosensing / Aren E. Gerdon ; David W. Wright ; David E. Cliffel3:
Principles of QCM / 3.1:
QCM Wave Penetration Depth / 3.1.2:
QCM Sensor Specificity / 3.1.3:
Calculation of Equilibrium and Kinetic Constants / 3.1.4:
QCM Application to Life Sciences / 3.1.5:
Interface Between Biology and Nanomaterials / 3.2:
Antibodies / 3.2.1:
Nanoparticles / 3.2.2:
QCM Nanoparticle-based Chemical Sensors / 3.3:
QCM Nanoparticle-based Biosensors / 3.4:
QCM Nanoparticle-based Immunosensors / 3.5:
Traditional Immunoassays / 3.5.1:
Immunoassays using Nanotechnology / 3.5.2:
Antigen Mimic Design / 3.5.3:
Glutathione-protected Nanocluster / 3.5.3.2:
Hemagglutanin Mimic Nanocluster / 3.5.3.3:
Protective Antigen of B. anthracis Mimic Nanocluster / 3.5.3.4:
Conclusions and Future Directions / 3.6:
Symbols
NMR Characterization Techniques - Application to Nanoscaled Pharmaceutical Carriers / Christian Mayer4:
Structural Analysis of Nanoparticles / 4.1:
Phase Transitions of the Particle Matrix / 4.3:
Adsorption to the Particle Surface / 4.4:
Molecular Exchange through Nanocapsule Membranes / 4.5:
Particle Degradation and Release / 4.6:
Summary and Outlook / 4.7:
Characterization of Nano Features in Biopolymers using Small-angle X-ray Scattering, Electron Microscopy and Modeling / Angelika Krebs ; Bettina Bottcher5:
Small-angle X-ray Scattering / 5.1:
Scattering Technique / 5.2.1:
Scattering Phenomenon / 5.2.1.1:
Scattering Curve and Pair Distance Distribution Function / 5.2.1.2:
Determination of Scattering Parameters / 5.2.1.3:
Experimental Setup / 5.2.1.4:
Interpretation of Data / 5.2.2:
Direct Methods / 5.2.2.1:
Indirect Methods / 5.2.2.2:
Electron Microscopy / 5.3:
Image Formation / 5.3.1:
Interference of Electrons with Matter / 5.3.1.1:
Contrast Transfer Function / 5.3.1.2:
Sample Preparation / 5.3.2:
Vitrification of Biological Specimens / 5.3.2.1:
Two-dimensional Merging of Electron Microscopic Data / 5.3.3:
Cross Correlation Function / 5.3.3.1:
Identification of the Different Views / 5.3.3.2:
Merging of EM-data in Three Dimensions / 5.3.4:
Sinogram Correlation / 5.3.4.1:
Reconstruction of the Three-dimensional Model / 5.3.4.2:
Merging of Methods / 5.4:
Comparison of EM and SAXS Data / 5.4.1:
SAXS Modeling Approaches using EM Information / 5.4.2:
In Situ Characterization of Drug Nanoparticles by FTIR Spectroscopy / Michael Turk ; Ruth Signorell6:
Particle Generation Methods / 6.1:
Rapid Expansion of Supercritical Solutions (RESS) / 6.2.1:
Electro-Spraying / 6.2.2:
Particle Characterization Methods / 6.3:
In Situ Characterization with FTIR Spectroscopy / 6.3.1:
Characterization of the RESS Process / 6.3.1.1:
In Situ Characterization with 3-WEM / 6.3.2:
Characterization with SMPS and SEM / 6.3.3:
Determination of Refractive Index Data in the Mid-infrared Region / 6.4:
Examples / 6.5:
Phenanthrene Particles: Size, Shape, Optical Data / 6.5.1:
Sugar Nanoparticles / 6.5.2:
Drug Nanoparticles / 6.5.3:
Summary and Conclusion / 6.6:
Acknowledgment
Characterization of Nanoscaled Drug Delivery Systems by Electron Spin Resonance (ESR) / Karsten Mader7:
ESR Basics and Requirements / 7.1:
Information from ESR Spectroscopy and Imaging / 7.3:
Nitroxide Concentration / 7.3.1:
Micropolarity and Microviscosity / 7.3.2:
Monitoring of Microacidity / 7.3.3:
ESR Imaging / 7.3.4:
In Vivo ESR / 7.4:
X-ray Absorption and Emission Spectroscopy in Nanoscience and Lifesciences / Jinghua Guo7.5:
Soft X-ray Spectroscopy / 8.1:
Soft X-ray Absorption Edges / 8.2.1:
Soft X-ray Emission Spectroscopy / 8.2.2:
Soft X-ray Absorption Spectroscopy / 8.2.3:
Resonant Soft X-ray Emission Spectroscopy / 8.2.4:
Experimental Details / 8.2.5:
Chemical Sensitivity of Soft X-ray Spectroscopy / 8.3:
Electronic Structure and Geometrical Structure / 8.3.1:
Hydrogen Bonding Effect / 8.3.2:
Charge and Spin States of Transition Metals / 8.3.3:
Electronic Structure and Nanostructure / 8.4:
Wide Bandgap Nanostructured Semiconductors / 8.4.1:
Cu Nanoclusters / 8.4.2:
ZnO Nanocrystals / 8.4.3:
Electronic Structure and Molecular Structure / 8.5:
Hydrogen Bonding in Liquid Water / 8.5.1:
Molecular Structure in Liquid Alcohol and Water Mixture / 8.5.2:
Electronic Structure and Ion Solvations / 8.5.3:
Drugs in Water Solution / 8.5.4:
Electronic Structure of Bases in DNA Duplexes / 8.5.5:
Some New Advances and Challenges in Biological and Biomedical Materials Characterization / Filip Braet ; Lilian Soon ; Thomas F. Kelly ; David J. Larson ; Simon P. Ringer9:
Modern Atom Probe Tomography: Principles, Applications in Biomaterials and Potential Applications for Biology / 9.1:
The Need for an Ideal Microscope / 9.2.1:
Field Ion Microscopy and the Modern Atom Probe Instrument / 9.2.1.1:
Applications in Biomaterials / 9.2.1.2:
Applications and Challenges for Biological Science / 9.2.1.3:
Instrumentation / 9.3:
Live Cell Imaging / 9.3.2.1:
Summary / 9.3.3:
Cryo-electron Microscopy / 9.4:
Cryo-electron Microscopy Imaging / 9.4.1:
Conclusions / 9.4.3:
Dynamic Light Scattering Microscopy / Rhonda Dzakpasu ; Daniel Axelrod10:
Theory / 10.1:
Single Scattering Center / 10.2.1:
Multiple Scattering Centers / 10.2.2:
Temporal Autocorrelation of Intensity / 10.2.3:
Phase Fluctuation Factors / 10.2.4:
Number Fluctuation Factors / 10.2.5:
Characteristic Times and Distances / 10.2.6:
Spatial Autocorrelation of Intensity / 10.2.7:
Variance of Intensity Fluctuations: Mobile Fraction / 10.2.8:
Experimental Design / 10.3:
Optical Setup / 10.3.1:
Data Acquisition / 10.3.2:
Sample Preparation: Polystyrene Beads / 10.3.3:
Sample Preparation: Living Macrophages / 10.3.4:
Buffer Changes during Data Acquisition / 10.3.5:
Data Analysis / 10.4:
Temporal Intensity Autocorrelation Function / 10.4.1:
Spatial Intensity Autocorrelation Function / 10.4.2:
Mobile Fraction / 10.4.3:
Experimental Results / 10.5:
Polystyrene Beads: Temporal Phase Autocorrelation / 10.5.1:
Variance of Intensity Fluctuations on Beads: Phase Fluctuations / 10.5.2:
Polystyrene Beads: Number Fluctuations / 10.5.3:
Polystyrene Beads: Spatial Autocorrelation / 10.5.4:
Polystyrene Beads: Mobile Fractions / 10.5.5:
Living Macrophage Cells: Temporal Autocorrelation / 10.5.6:
Living Macrophage Cells: Mobile Fraction / 10.5.7:
Discussion / 10.6:
Polystyrene Beads / 10.6.1:
Macrophages / 10.6.2:
Improvements for DLSM / 10.6.3:
X-ray Scattering Techniques for Characterization of Nanosystems in Lifesciences / Cheng K. Saw11:
Brief Historical Background and Unique Properties / 11.1:
Scattering of X-rays / 11.3:
Crystallography / 11.4:
Scattering from a Powder Sample / 11.5:
Scattering by Atomic Aggregates / 11.6:
Crystallite Size and Paracrystallinity / 11.7:
Production of X-rays / 11.8:
Absorption of X-rays / 11.9:
Instrumentation: WAXS / 11.10:
Small Angle X-ray Scattering / 11.11:
Dilute Systems / 11.11.1:
Highly Correlating Systems / 11.11.2:
SAXS Instrumentation / 11.12:
Synchrotron Radiation / 11.13:
Concluding Remarks / 11.14:
Index
Preface
List of Contributors
Fluorescence Imaging in Biology using Nanoprobes / Daniele Gerion1:
5.

図書

図書
edited by M. A. Atherton, M. W. Collins and M. J. Dayer
出版情報: Southampton : WIT Press, c2008  274 p ; 25cm
シリーズ名: Design and nature ; 9
所蔵情報: loading…
6.

図書

図書
Amit Gefen, editor
出版情報: Heidelberg : Springer, c2011  ix, 560 p. ; 24 cm
シリーズ名: Studies in mechanobiology, tissue engineering and biomaterials ; 4
所蔵情報: loading…
7.

図書

図書
Arnon Cohen
出版情報: Boca Raton, Fla. : CRC Press, c1986  195 p. ; 27 cm
シリーズ名: Biomedical signal processing / Arnon Cohen ; v. 2
所蔵情報: loading…
8.

図書

図書
Arnon Cohen
出版情報: Boca Raton, Fla. : CRC Press, c1986  167 p. ; 27 cm
シリーズ名: Biomedical signal processing / Arnon Cohen ; v. 1
所蔵情報: loading…
9.

図書

図書
co-editors, Richard Skalak, Shu Chien
出版情報: New York ; Tokyo : McGraw-Hill, c1987  1 v. (various pagings) ; 24 cm
所蔵情報: loading…
10.

図書

図書
Joon Bu Park
出版情報: New York : Plenum Press, c1984  xv, 459 p. ; 24 cm
所蔵情報: loading…
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼