Preface |
List of Contributors |
Part I Introduction 1 |
Chapter 1.1 Physics and Mineralogy: The Current Confluence Hideo Aoki, Yasuhiko Syono, Russell J. Hemley 3 |
1.1.1 Introduction 3 |
1.1.2 From Mineral Assemblages to First-Principles Theory 4 |
1.1.3 Physics Meets Mineralogy: An Overview of the Articles in this Book 10 |
1.1.4 Conclusion 15 |
References 15 |
Part II Advances in Theoretical and Experimental Techniques 19 |
Chapter 2.1 Density Functional Theory in Mineral Physics Lars Stixrude 21 |
2.1.1 Introduction 21 |
2.1.2 Theory 23 |
2.1.3 Computation 31 |
2.1.4 Some Applications 34 |
2.1.5 Future Directions 38 |
2.1.6 Conclusions 40 |
Acknowledgment 41 |
References 41 |
Chapter 2.2 Crystallographic Orbits and Their Application to Structure Types Takeo Matsumoto 44 |
2.2.1 Introduction 44 |
2.2.2 Definitions 45 |
2.2.3 Application of Noncharacteristic Orbits to the Derived Fluorite-Type Structures 50 |
2.2.4 Summary 58 |
Acknowledgments 58 |
References 58 |
Appendix: NCOs of the Space Groups 59 |
Chapter 2.3 Accuracy in X-Ray Diffraction Larry W. Finger 63 |
2.3.1 Introduction 63 |
2.3.2 Axial Divergence 63 |
2.3.3 Sample Positioning Errors 67 |
2.3.4 Nonhydrostatic Stress 68 |
2.3.5 Conclusions 70 |
Acknowledgments 70 |
References 70 |
Chapter 2.4 Statistical Analysis of Phase-Boundary Observations Abby Kavner, Terry Speed, and Raymond Jeanloz 71 |
2.4.1 Introduction 71 |
2.4.2 Generalized Linear Model 73 |
2.4.3 Results: Analysis of Platinum Data 75 |
2.4.4 Results: Analysis of Previous Statistical Methods 77 |
References 79 |
Part III New Findings in Oxides and Silicates 81 |
Chapter 3.1 Search for a Connection Among Bond Strength, Bond Length, and Electron-Density Distributions G.V. Gibbs, M.B. Boisen, Jr., F.C. Hill, and Osamu Tamada 83 |
3.1.1 Introduction 83 |
3.1.2 Power-Law Relationships 86 |
3.1.3 Discussion 90 |
Acknowledgments 93 |
References 93 |
Chapter 3.2 MgO-The Simplest Oxide R.E. Cohen 95 |
3.2.1 Electronic Structure of MgO 96 |
3.2.2 Equation of State 101 |
3.2.3 Elasticity 103 |
3.2.4 Thermal Conductivity 106 |
3.2.5 Melting 113 |
3.2.6 Defects and Diffusion 117 |
3.2.7 Summary and Conclusions 119 |
Acknowledgments 120 |
References 120 |
Chapter 3.3 First-Principles Theoretical Study of the High-Pressure Phases of MnO and FeO: Normal and Inverse NiAs Structures Z. Fang, K. Terakura, H. Sawada, I. Solovyev, and T. Miyazaki 124 |
3.3.1 Introduction 124 |
3.3.2 First-Principles Calculations Based on DFT 127 |
3.3.3 Plane-Wave Basis Pseudopotential Method 128 |
3.3.4 Results and Discussion 130 |
3.3.5 Summary of Results 140 |
Acknowledgments 140 |
References 140 |
Chapter 3.4 Computer-Simulation Approach to the Thermoelastic, Transport, and Melting Properties of Lower-Mantle Phases Atul Patel, Lidunka Vocadlo, and G. David Price 143 |
3.4.1 Introduction 143 |
3.4.2 Computer-Simulation Techniques and Diffusion Models 144 |
3.4.3 Geophysical Applications 151 |
3.4.4 Summary 167 |
References 168 |
Part IV Transformations in Silica 171 |
Chapter 4.1 Polymorphism in Crystalline and Amorphous Silica at High Pressures Russell J. Hemley, James Badro, and David M. Teter 173 |
4.1.1 Introduction 173 |
4.1.2 Equilibrium High-Pressure Phases 174 |
4.1.3 Metastable Crystalline High-Pressure Phases 181 |
4.1.4 High-Pressure Amorphous Forms 190 |
4.1.5 High-Density Liquid 196 |
4.1.6 Conclusions 200 |
References 200 |
Chapter 4.2 Shock-Induced Phase Transitions of Rutile Structures Studies by the Molecular-Dynamics Calculation Keiji Kusaba and Yasuhiko Syono 205 |
4.2.1 Introduction 205 |
4.2.2 Computational Experiments 208 |
4.2.3 Result 210 |
4.2.4 Comparing Calculation Results with High-Pressure Experiments 219 |
4.2.5 Summary 222 |
Acknowledgment 222 |
References 223 |
Chapter 4.3 Lattice Instabilities Examined by X-ray Diffractometery and Molecular Dynamics Takamitsu Yamanaka and Taku Tsuchiya 225 |
4.3.1 Introduction 225 |
4.3.2 Lattice Instability Under Pressure 227 |
4.3.3 Homogeneous Three-Dimensional Strain 228 |
4.3.4 Effect on the Diffraction Intensity 229 |
4.3.5 Effect on th3 Diffraction Profile on the FWHM 231 |
4.3.6 Observations of Lattice Instability 232 |
4.3.7 Simulation of Pressure-Induced Amorphization by Molecular Dynamics 234 |
4.3.8 MD-Dynamics Simulation Techniques 235 |
4.3.9 Mechanism of Pressure-Induced Amorphization 238 |
References 240 |
Chapter 4.4 Effect of Hydrostaticity on the Phase Transformations of Cristobalite Takehiko Yagi and Masaaki Yamakata 242 |
4.4.1 Introduction 242 |
4.4.2 Experimental 243 |
4.4.3 Results 244 |
4.4.4 Discussion 251 |
4.4.5 Conclusion 253 |
Acknowledgments 254 |
References 254 |
Part V Novel Structures and Materials 257 |
Chapter 5.1 Opportunities in the Diversity of Crystal Structures - A View from Condensed-Matter Physics Hideo Aoki 259 |
5.1.1 Introduction 259 |
5.1.2 Polymorphism - A Case Study in Silica 260 |
5.1.3 Polymorphs in General 275 |
5.1.4 Pressure-Induced Amorphisation 279 |
5.1.5 Superstructures 280 |
5.1.6 Metal-Insulator Transition - An Example of the Electron-Correlation Effect 284 |
5.1.7 Electron-Correlation Engineering in Novel Structures 286 |
Acknowledgments 293 |
References 293 |
Chapter 5.2 Theoretical Search for New Materials - Low-Temperature Compression of Graphitic Layered Materials S. Tsuneyuki, Y. Tateyama, T. Ogitsu, and K. Kusakabe 299 |
5.2.1 Introduction 299 |
5.2.2 BCN Heterodiamond 301 |
5.2.3 Li-Encapsulated Diamond 303 |
5.2.4 Conclusion 305 |
Acknowledgments 306 |
References 306 |
Chapter 5.3 H...H Interactions and Order-Disorder at High Pressure in Layered Hydroxides and Dense Hydrous Phases J.B. Parise, H. Kagi, J.S. Loveday, R.J. Nelmes, and W.G. Marshall 308 |
5.3.1 Introduction 308 |
5.3.2 Experimental Details 314 |
5.3.3 Results 316 |
5.3.4 Discussion 318 |
5.3.5 Conclusion and Future Work 319 |
Acknowledgments 319 |
References 320 |
Part VI Melts and Crystal-Melt Interactions 323 |
Chapter 6.1 Comparison of Pair-Potential Models for the Simulation of Liquid SiO2: Thermodynamic, Angular-Distribution, and Diffusional Properties M. Hemmati and C.A. Angell 325 |
6.1.1 Introduction 325 |
6.1.2 Procedures 328 |
6.1.3 Results 330 |
6.1.4 Discussion 335 |
6.1.5 Conclusions 336 |
Acknowledgments 336 |
References 337 |
Chapter 6.2 Transport Properties of Silicate Melts at High Pressure Brent T. Poe and David C. Rubie 340 |
6.2.1 Introduction 340 |
6.2.2 Previous Experimental Studies 342 |
6.2.3 Experimental Methods 344 |
6.2.4 Ion-Microprobe Probe Analysis 345 |
6.2.5 Results and Discussion 346 |
Acknowledgments 351 |
References 352 |
Chapter 6.3 Structural Characterization of Oxide Melts with Advanced X-Ray-Diffraction Methods Yoshio Waseda and Kazumasa Sugiyama 354 |
6.3.1 Introduction 354 |
6.3.2 Ordinary Angular-Dispersive X-Ray Diffraction 355 |
6.3.3 Energy-Dispersive X-Ray Diffraction 363 |
6.3.4 Anomalous X-Ray-Scattering Method 369 |
6.3.5 Summary 377 |
Acknowledgments 378 |
References 378 |
Chapter 6.4 Computer-Simulation Approach for the Prediction of Trace-Element Partitioning Between Crystal and Melt Masami Kanzaki 381 |
6.4.1 Introduction 381 |
6.4.2 Calculation Procedure 382 |
6.4.3 Results 385 |
6.4.4 Discussion 388 |
Acknowledgments 389 |
References 389 |
Subject Index 391 |
Materials Formula Index 395 |
Index of Contributors 397 |