close
1.

図書

図書
edited by A.A. Wragg
出版情報: Rugby : Institution of Chemical Engineers, c1999  xii,339p ; 22cm
シリーズ名: Symposium series ; no.145
所蔵情報: loading…
2.

図書

図書
edited by J.A.G. Drake
出版情報: Cambridge : Royal Society of Chemistry, 1994  vi, 103 p. ; 24 cm
シリーズ名: Special publication / Royal Society of Chemistry ; no. 146
所蔵情報: loading…
3.

図書

図書
Ewald Heitz, Gerhard Kreysa
出版情報: New York, N.Y. : VCH, c1986  xiii, 294 p. ; 21 cm
所蔵情報: loading…
4.

図書

図書
Waldfried Plieth
出版情報: Amsterdam : Elsevier, c2008  xxi, 410 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
List of Symbols
Preface
Electrolytes / 1:
Liquid Electrolyte Solutions / 1.1:
Ionic Melts / 1.2:
Alkali halide melts / 1.2.1:
Glass forming molten salts / 1.2.2:
Ionic liquids / 1.2.3:
Ionic Conductance in Polymers / 1.3:
Polymer electrolytes / 1.3.1:
Gel polymer electrolytes / 1.3.2:
Ion exchanging polymer electrolytes / 1.3.3:
Ionic Conductance in Solids / 1.4:
Crystal defects / 1.4.1:
Intrinsic disorder / 1.4.2:
Extrinsic disorder / 1.4.3:
Disorder in sub-lattices / 1.4.4:
Transport by defects / 1.4.5:
Ion conducting glasses / 1.4.6:
Mixed ionic and electronic conductance / 1.4.7:
Structure and Bonding / 2:
Structure Factors / 2.1:
Closed Packed Structures of Metals / 2.2:
Alloys with Closed Packed Structure / 2.3:
Hume-Rothery Rules for Formation of Solid Solutions / 2.4:
Body Centered Cubic Structure / 2.5:
Hume-Rothery Phases / 2.6:
Ionic Structures / 2.7:
Coordination Polyhedrons of Molecules / 2.8:
The Band Model of Electrons in Solids / 2.9:
Free electrons in a metal / 2.9.1:
Orbitals in solids / 2.9.2:
Density of states (DOS) / 2.9.3:
Filling up with electrons; Fermi energy / 2.9.4:
Crystal orbital overlap population: the formation of bonds / 2.9.5:
Extension to more dimensions / 2.9.6:
Band structure of d-metals / 2.9.7:
Semiconductors: example TiO[subscript 2] / 2.9.8:
Peierls distortion / 2.9.9:
Energy bands in electrolytes / 2.9.10:
Cohesion in Solids / 2.10:
Lattice enthalpy / 2.10.1:
Sublimation enthalpy / 2.10.2:
Bond energies of metals / 2.10.3:
Bond energies of alloys / 2.10.4:
Electrode Potentials / 3:
Pure Metals / 3.1:
Equilibrium between a metal phase and an electrolyte phase / 3.1.1:
Standard electrode potentials / 3.1.2:
Standard electrode potentials of metal complexes / 3.1.3:
Alloys / 3.2:
Partial molar Gibbs energies / 3.2.1:
Electrochemical measurements of partial molar functions / 3.2.2:
Ag[subscript x]Au[subscript y]-example of a solid solution / 3.2.3:
Partial molar functions of component B / 3.2.4:
From partial molar functions to integral functions / 3.2.5:
Intermetallic Phases and Compounds / 3.3:
Potential versus mole fraction diagrams / 3.3.1:
Coulometric titration / 3.3.2:
Coulometric titration: the system LiAl / 3.3.3:
Intermetallic compounds: the system LiSb / 3.3.4:
Measurements at room temperatures: CuZn / 3.3.5:
Ad-Atoms and Underpotential Deposition / 4:
The Thermodynamic Description of the Interphase / 4.1:
The electrochemical double layer / 4.1.1:
Ideally polarizable electrodes / 4.1.2:
Electrocapillary curves / 4.1.3:
Adsorption isotherms / 4.1.4:
Reversible electrodes / 4.1.5:
Partial charge and electrosorption valency / 4.1.6:
Thermodynamics of solid electrolyte interfaces / 4.1.7:
Principal Methods for the Investigation of the Electrochemical Double Layer / 4.2:
Measurement of capacitance / 4.2.1:
Cyclic voltammetry and chronoamperometry / 4.2.2:
Determination of the adsorbed mass / 4.2.3:
Scanning tunneling microscopy and related methods / 4.2.4:
Ad-Atoms / 4.3:
Adsorption and desorption of ad-atoms / 4.3.1:
Equilibrium ad-atom concentration / 4.3.2:
Surface diffusion of ad-atoms / 4.3.3:
Underpotential Deposition / 4.4:
Lead on silver / 4.4.1:
Copper on Au / 4.4.2:
Underpotential deposition as two-dimensional phase formation / 4.4.3:
Multiple steps of UPD film formation / 4.4.4:
Mass Transport / 5:
Stationary Diffusion / 5.1:
Non-Stationary Diffusion / 5.2:
Chronopotentiometry / 5.2.1:
Chronoamperometry, chronocoulometry / 5.2.2:
Warburg impedance / 5.2.3:
Cyclic voltammetry / 5.2.4:
Microelectrodes / 5.2.5:
Diffusion in Solid Phases / 5.3:
Potentiostatic method / 5.3.1:
Galvanostatic method / 5.3.2:
Methods to Control Diffusion Overpotential / 5.4:
Rotating-disc electrode / 5.4.1:
Rotating ring-disc electrodes / 5.4.2:
Rotating-cylinder electrodes / 5.4.3:
Charge Transfer / 6:
Electron Transfer / 6.1:
Butler-Volmer equation / 6.1.1:
Tafel lines / 6.1.2:
Charge transfer resistance / 6.1.3:
Theories of electron transfer / 6.1.4:
Electrochemical Reaction Orders / 6.2:
Determination of electrochemical reaction orders from Tafel lines / 6.2.1:
Determination of electrochemical reaction orders from the charge transfer resistance / 6.2.2:
Ion Transfer / 6.3:
Charge Transfer and Mass Transport / 6.4:
Elimination of diffusion overpotential with a rotating disc electrode / 6.4.1:
Elimination of diffusion contribution to the overpotential in chronoamperometry and chronopotentiometry / 6.4.2:
Elimination of diffusion contributions to the overpotential by impedance spectroscopy / 6.4.3:
Nucleation and Growth of Metals / 7:
Nucleation / 7.1:
Three-dimensional nucleation / 7.1.1:
Two-dimensional nucleation / 7.1.2:
Rate of nucleation / 7.1.3:
Instantaneous and progressive nucleation / 7.1.4:
Intermediate States of Electrodeposition / 7.2:
Crystallization overpotential / 7.2.1:
Surface Dynamics / 7.3:
Residence time in kink site positions / 7.3.1:
Calculation of the residence time / 7.3.2:
Density of Kink Site Positions / 7.4:
Equilibrium conditions / 7.4.1:
Deposition conditions / 7.4.2:
Experimental Investigations of Electrodeposition / 7.5:
Electrodeposition on amalgam electrodes / 7.5.1:
Investigations on solid electrodes / 7.5.2:
Applications of electrodeposition from aqueous solvents / 7.5.3:
Parallel reactions / 7.5.4:
Deposition From Non-Aqueous Solvents / 7.6:
Aluminum deposition from a molten salt / 7.6.1:
Aluminum deposition from an organic electrolyte / 7.6.2:
Aluminum deposition from ionic liquids / 7.6.3:
Additives / 7.7:
Adsorption, the hard-soft concept / 7.7.1:
Influence of additives on deposition at different crystallographic faces / 7.7.2:
Anodic stripping to study additive behavior / 7.7.3:
Optical Spectroscopy to Study Metal Deposition / 7.8:
Raman spectroscopy on silver in cyanide electrolytes / 7.8.1:
Raman spectroscopy of organic additives / 7.8.2:
Deposition of Alloys / 8:
Deposition Potential and Equilibrium Potential / 8.1:
Alloy Nucleation and Growth: The Partial Current Concept / 8.2:
Brenner's Alloy Classification / 8.3:
Mixed Potential Theory / 8.4:
Surface Selectivity in Alloy Deposition / 8.5:
Kink site positions of alloys / 8.5.1:
Rate of separation and residence times / 8.5.2:
Residence time and structure of alloys / 8.5.3:
Markov Chain Theory; Definition of the Probability Matrix / 8.6:
Equilibrium of the crystallization process / 8.6.1:
Rate controlled processes / 8.6.2:
Determination of selectivity constants / 8.6.3:
Alloy characterization by selectivity constants / 8.6.4:
Selectivity constants and residence times in kink site positions / 8.6.5:
Experimental Examples / 8.7:
The cobalt-iron alloy system / 8.7.1:
Cobalt-nickel / 8.7.2:
Iron-nickel / 8.7.3:
Induced electrodeposition: the NiMo system / 8.7.4:
Ternary Systems / 8.8:
Kink site positions of ternary systems / 8.8.1:
The Markov chain theory for ternary systems / 8.8.2:
Example: prediction of the composition of CoFeNi alloys / 8.8.3:
Oxides and Semiconductors / 9:
Electrochemical Properties of a Semiconductor / 9.1:
Band model of a semiconductor / 9.1.1:
Semiconductor-electrolyte contact / 9.1.2:
Gap states and surface states / 9.1.3:
Current-potential curves / 9.1.4:
Space-charge capacitance / 9.1.5:
Photoelectrochemistry of Semiconductors / 9.2:
Photocurrents / 9.2.1:
Intensity modulated photocurrent spectroscopy (IMPS) / 9.2.2:
Photopotentials and photopotential transients / 9.2.3:
Spectroscopic Methods / 9.3:
In situ spectroscopic methods / 9.3.1:
In situ X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) / 9.3.2:
In situ Mossbauer spectroscopy / 9.3.3:
Ex situ methods / 9.3.4:
Microscopy / 9.4:
Oxide Particles / 9.5:
Batteries / 9.5.1:
Lithium ion batteries / 9.5.2:
TiO[subscript 2]-based photovoltaic cells / 9.5.3:
Catalytic activity of oxide particles / 9.5.4:
Oxide Layers / 9.6:
Electrochemical Deposition of Semiconductors / 9.7:
Corrosion and Corrosion Protection / 10:
Corrosion / 10.1:
Fundamental processes / 10.1.1:
Mechanism of metal dissolution / 10.1.2:
Mechanisms of compensation reactions / 10.1.3:
Iron and steel / 10.1.4:
Metallurgical aspects of iron and steel / 10.1.5:
Copper / 10.1.6:
Zinc / 10.1.7:
Corrosion products / 10.1.8:
Corrosion of alloys / 10.1.9:
Corrosion Protection / 10.2:
Passivity / 10.2.1:
Cathodic protection / 10.2.2:
Corrosion inhibition / 10.2.3:
Phosphatizing / 10.2.4:
Chromatizing / 10.2.5:
Corrosion protection by surface coatings / 10.2.6:
Intrinsically Conducting Polymers / 11:
Chemical Synthesis / 11.1:
Electrochemical Synthesis and Surface Film Formation / 11.2:
Film Formation with Adhesion Promoters / 11.3:
Ion Transport During Oxidation-Reduction / 11.4:
Analyzing oxidation-reduction cycles using QCMB / 11.4.1:
Electrical and Optical Film Properties / 11.5:
Impedance of conducting polymers / 11.5.1:
Neutral state properties / 11.5.2:
Photoelectrochemical properties / 11.5.3:
Polaron-bipolaron model of conducting polymers / 11.5.4:
Spectro-electrochemical methods / 11.5.5:
Copolymerization / 11.6:
Mechanism of copolymerization / 11.6.1:
Structure analysis of copolymers / 11.6.2:
Properties of copolymers / 11.6.3:
Corrosion Protection by Intrinsically Conducting Polymers / 11.7:
Film formation on non-noble metals / 11.7.1:
Kinetic experiments of corrosion protection / 11.7.2:
Role of anions for a possible corrosion protection of conducting polymers / 11.7.3:
Nanoelectrochemistry / 12:
Going to Atomic Dimensions / 12.1:
Co-Deposition / 12.2:
Particle dispersions / 12.2.1:
Determination of the zeta potential / 12.2.2:
Factors influencing zeta potential and particle properties / 12.2.3:
Properties of the metal surface / 12.2.4:
Process parameters influencing the incorporation / 12.2.5:
Mechanistic models / 12.2.6:
General concepts for the development of a model / 12.2.7:
Examples / 12.2.8:
Compositionally Modulated Multi-Layers / 12.3:
Plating of multi-layers / 12.3.1:
Examples of multi-layers / 12.3.2:
Core-Shell Composites / 12.4:
Preparation procedure / 12.4.1:
Particle characterization: applications / 12.4.2:
Index
List of Symbols
Preface
Electrolytes / 1:
5.

図書

図書
John Newman and Karen E. Thomas-Alyea
出版情報: Hoboken, N.J. : J. Wiley, c2004  xx, 647 p. ; 25 cm
所蔵情報: loading…
6.

図書

図書
W. A. Fischer, D. Janke
出版情報: Düsseldorf : Verlag Stahleisen , Berlin ; New York : Springer-Verlag, 1975  xi, 525 p. ; 24 cm
所蔵情報: loading…
7.

図書

図書
edited by A.T. Kuhn
出版情報: Amsterdam ; New York : Elsevier Pub. Co., 1971  xxiii, 632 p. ; 25 cm
所蔵情報: loading…
8.

図書

図書
John S. Newman
出版情報: Englewood Cliffs, N.J. : Prentice-Hall, c1973  xiv, 432 p. ; 24 cm
シリーズ名: Prentice-Hall international series in the physical and chemical engineering sciences
所蔵情報: loading…
9.

図書

図書
Thomas Z. Fahidy
出版情報: Amsterdam ; New York : Elsevier, 1985  xii, 315 p. ; 25 cm
シリーズ名: Chemical engineering monographs ; v. 18
所蔵情報: loading…
10.

図書

図書
edited by Noboru Masuko, Tetsuya Osaka and Yasuhiko Ito
出版情報: Tokyo : Kodansha , Amsterdam : Gordon and Breach, 1996  xvii, 409 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Image and Signal Processing / 1:
CCD Camera and Applications / 2:
CCD Delay Line and CCD Linear Sensor / 3:
The CCD Manufacturing Process / 4:
Advanced Surface Finishing for Electronics Application / 5:
Designing MCM Substrate Computers / 6:
Electroless Deposition of Metals and Control of Bath Activity and Film Quality in Electroless Copper / 7:
Electrochemical Micromachining Electrodeposition of Metals on Single Crystal Substrates / 8:
Molten Salt Electrochemical Deposition: Overview and in / 9:
Image and Signal Processing / 1:
CCD Camera and Applications / 2:
CCD Delay Line and CCD Linear Sensor / 3:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼