close
1.

図書

図書
Ralph I. Stephens ... [et al.]
出版情報: New York : J. Wiley, c2001  xxi, 472 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Biographical Sketches
Introduction and Historical Overview / 1:
Mechanical Failure Modes / 1.1:
Importance of Fatigue Considerations in Design / 1.2:
Historical Overview of Fatigue / 1.3:
Summary / 1.4:
Dos and Don'ts in Design / 1.5:
References / 1.6:
Problems
Fatigue Design Methods / 2:
Strategies in Fatigue Design / 2.1:
The In-House Tool / 2.1.1:
The New Model / 2.1.2:
The New Product / 2.1.3:
Design to Code / 2.1.4:
Fatigue Design Criteria / 2.2:
Infinite-Life Design / 2.2.1:
Safe-Life Design / 2.2.2:
Fail-Safe Design / 2.2.3:
Damage-Tolerant Design / 2.2.4:
Analysis and Testing / 2.3:
Probabilistic Design and Reliability / 2.4:
CAE and Digital Prototyping / 2.5:
In-Service Inspection and Acquisition of Relevant Experience / 2.6:
Macro/Micro Aspects of Fatigue of Metals / 2.7:
Fatigue Fracture Surfaces and Macroscopic Features / 3.1:
Fatigue Mechanisms and Microscopic Features / 3.2:
Fatigue Tests and the Stress-Life (S-N) Approach / 3.3:
Fatigue Loading, Test Machines, and Specimens / 4.1:
Fatigue Loading / 4.1.1:
Fatigue Test Machines / 4.1.2:
Fatigue Test Specimens / 4.1.3:
Stress-Life (S-N) Curves / 4.2:
General S-N Behavior / 4.2.1:
Fatigue Limit Under Fully Reversed Uniaxial Stressing / 4.2.2:
Mean Stress Effects on S-N Behavior / 4.3:
Factors Influencing S-N Behavior / 4.4:
Microstructure / 4.4.1:
Size Effects / 4.4.2:
Surface Finish / 4.4.3:
Frequency / 4.4.4:
S-N Curve Representation and Approximations / 4.5:
Example of Life Estimation Using the S-N Approach / 4.6:
Cyclic Deformation and the Strain-Life ([varepsilon]-N) Approach / 4.7:
Monotonic Tension Test and Stress-Strain Behavior / 5.1:
Strain-Controlled Test Methods / 5.2:
Cycle-Dependent Material Deformation and Cyclic Stress-Strain Behavior / 5.3:
Strain-Based ([varepsilon]-N) Approach to Life Estimation / 5.4:
Determination of Strain-Life Fatigue Properties / 5.5:
Mean Stress Effects / 5.6:
Surface Finish and Other Factors Influencing Strain-Life Behavior / 5.7:
Fundamentals of Lefm and Applications to Fatigue Crack Growth / 5.8:
Lefm Concepts / 6.1:
Loading Modes / 6.1.1:
Stress Intensity Factor, K / 6.1.2:
K Expressions for Common Cracked Members / 6.1.3:
Superposition for Combined Mode I Loading / 6.1.4:
Crack Tip Plastic Zone / 6.2:
Fracture Toughness--K[subscript c], K[subscript Ic] / 6.3:
Fatigue Crack Growth, da/dN-[Detta]K / 6.4:
Sigmoidal da/dN-[Detta]K Curve / 6.4.1:
Constant Amplitude Fatigue Crack Growth Test Methods / 6.4.2:
da/dN-[Detta]K for R = 0 / 6.4.3:
Crack Growth Life Integration Example with No Mean Stress Effects / 6.4.4:
Cyclic Plastic Zone Size / 6.5:
Crack Closure / 6.7:
Small Fatigue Cracks and Lefm Limitations / 6.8:
Plasticity Extension of Lefm and Elastic-Plastic Fracture Mechanics / 6.9:
Notches and Their Effects / 6.10:
Concentrations and Gradients of Stress and Strain / 7.1:
S-N Approach for Notched Members / 7.2:
Notch Sensitivity and the Fatigue Notch Factor, K[subscript f] / 7.2.1:
Effects of Stress Level on Notch Factor / 7.2.2:
Mean Stress Effects and Haigh Diagrams / 7.2.3:
Example of Life Estimation with the S-N Approach / 7.2.4:
Notch Strain Analysis and the Strain-Life Approach / 7.3:
Notch Stresses and Strains / 7.3.1:
Neuber's Rule / 7.3.2:
Strain Energy Density or Glinka's Rule / 7.3.3:
Plane Stress versus Plane Strain / 7.3.4:
Example of Life Estimation Using the Strain-Life Approach / 7.3.5:
Applications of Fracture Mechanics to Crack Growth at Notches / 7.4:
The Two-Stage Approach to Fatigue Life Estimation / 7.5:
Residual Stresses and Their Effects on Fatigue Resistance / 7.6:
Examples / 8.1:
Production of Residual Stresses and Fatigue Resistance / 8.2:
Mechanical Methods / 8.2.1:
Thermal Methods / 8.2.2:
Plating / 8.2.3:
Machining / 8.2.4:
Relaxation of Residual Stresses / 8.3:
Measurement of Residual Stresses / 8.4:
Stress Intensity Factors for Residual Stresses / 8.5:
Fatigue from Variable Amplitude Loading / 8.6:
Spectrum Loads and Cumulative Damage / 9.1:
Damage Quantification and the Concepts of Damage Fraction and Accumulation / 9.2:
Cumulative Damage Theories / 9.3:
Palmgren-Miner Linear Damage Rule / 9.3.1:
Nonlinear Damage Theories / 9.3.2:
Load Interaction and Sequence Effects / 9.4:
Cycle Counting Methods / 9.5:
Rainflow Method / 9.5.1:
Other Cycle Counting Methods / 9.5.2:
Life Estimation Using the Stress-Life Approach / 9.6:
Life Estimation Using the Strain-Life Approach / 9.7:
Crack Growth and Life Estimation Models / 9.8:
Simulating Service Histories in the Laboratory and Digital Prototyping / 9.9:
Laboratory Test Methods / 9.9.1:
Digital Prototyping / 9.9.2:
Multiaxial Stresses / 9.10:
States of Stress and Strain and Proportional versus Nonproportional Loading / 10.1:
Yielding and Plasticity in Multiaxial Fatigue / 10.2:
Stress-Based Criteria / 10.3:
Equivalent Stress Approaches / 10.3.1:
Sines Method / 10.3.2:
Examples Using the Stress-Life Approach / 10.3.3:
Strain-Based, Energy-Based, and Critical Plane Approaches / 10.4:
Strain-Based and Energy-Based Approaches / 10.4.1:
Critical Plane Approaches and the Fatemi-Socie Model / 10.4.2:
Example of Nonproportional Loading / 10.4.3:
Fracture Mechanics Models for Fatigue Crack Growth / 10.5:
Notch Effects and Variable Amplitude Loading / 10.6:
Environmental Effects / 10.7:
Corrosion Fatigue / 11.1:
Stress Corrosion Cracking/Environment-Assisted Cracking / 11.1.1:
Stress-Life (S-N) Behavior / 11.1.2:
Strain-Life ([varepsilon]-N) Behavior / 11.1.3:
Fatigue Crack Growth (da/dN-[Delta]K) Behavior / 11.1.4:
Protection Against Corrosion Fatigue / 11.1.5:
Corrosion Fatigue Life Estimation / 11.1.6:
Fretting Fatigue / 11.1.7:
Mechanisms of Fretting Fatigue / 11.2.1:
Influence of Variables / 11.2.2:
Low-Temperature Fatigue / 11.2.3:
Monotonic Behavior at Low Temperatures / 11.3.1:
Stress-life (S-N) Behavior / 11.3.2:
Strain-life ([varepsilon]-N) Behavior / 11.3.3:
Variable Amplitude Behavior and Fatigue Life Estimation / 11.3.4:
High-Temperature Fatigue / 11.3.6:
Creep Deformation / 11.4.1:
Stress-Strain Behavior Under Cyclic Loading and Hold Times / 11.4.2:
Stress-life (S-N) Creep Behavior / 11.4.3:
Neutron Irradiation / 11.4.4:
Fatigue of Weldments / 12:
Weldment Nomenclature and Discontinuities / 12.1:
Constant Amplitude Fatigue Behavior of Weldments / 12.2:
Crack Growth (da/dN-[Delta]K) Behavior / 12.2.1:
Spot Welds / 12.2.4:
Improving Weldment Fatigue Resistance / 12.3:
Weldment Fatigue Life Estimation / 12.4:
General Weldment Fatigue Life Models / 12.4.1:
Weldment Fatigue Design Codes and Standards / 12.4.2:
Statistical Aspects of Fatigue / 12.5:
Definitions and Quantification of Data Scatter / 13.1:
Probability Distributions / 13.2:
Normal and Log-Normal Distributions / 13.2.1:
Weibull Distributions / 13.2.2:
Estimating Low Probabilities of Failure / 13.2.3:
Tolerance Limits / 13.3:
Regression Analysis of Fatigue Data / 13.4:
Reliability Analysis / 13.5:
Example Problem Using the Weibull Distribution / 13.6:
Material Properties / 13.7:
Monotonic Tensile Properties and Fully Reversed, Bending Unnotched Fatigue Limits, S[subscript f], of Selected Engineering Alloys / Table A.1:
Monotonic, Cyclic, and Strain-Life Properties of Selected Engineering Alloys / Table A.2:
Plane Strain Fracture Toughness, K[subscript Ic], for Selected Engineering Alloys (Plate Stock, L-T Direction Unless Otherwise Specified) / Table A.3:
Fatigue Crack Growth Threshold, [Delta]Kth, for Selected Engineering Alloys / Table A.4:
Corrosion Fatigue Behavior in Water or Salt Water for Life [greater than or equal] 10[superscript 7] Cycles for Selected Engineering Alloys / Table A.5:
Author Index
Subject Index
Preface
Biographical Sketches
Introduction and Historical Overview / 1:
2.

図書

図書
J.C. Newman, Jr. and R.S. Piascik, editors
出版情報: West Conshohocken, PA : ASTM, c2000  xii, 431 p. ; 24 cm
シリーズ名: ASTM special technical publication ; 1372
所蔵情報: loading…
目次情報: 続きを見る
Overview
Mechanisms
Mechanisms and Modeling of Near-Threshold Fatigue Crack Propagation / J. Petit ; G. Henaff ; C. Sarrazin-Baudoux
The Significance of the Intrinsic Threshold--What Is New? / A. Hadrboletz ; B. Weiss ; R. Stickler
On the Significance of Crack Tip Shielding in Fatigue Threshold-Theoretical Relations and Experimental Implications / H.-J. Schindler
Effects of K[subscript max] on Fatigue Crack Growth Threshold in Aluminum Alloys / J. A. Newman, Jr. ; W. T. Riddell ; R. S. Piascik
Test Procedures
Fatigue Crack Growth Threshold Concept and Test Results for Al- and Ti-Alloys / G. Marci
Resistance Curves for the Threshold of Fatigue Crack Propagation in Particle Reinforced Aluminium Alloys / B. Tabernig ; P. Powell ; R. Pippan
An Indirect Technique for Determining Closure-Free Fatigue Crack Growth Behavior / S. W. Smith
Effect of an Overload on the Threshold Level of Ti-6-22-22 / A. J. McEvily ; M. Ohashi ; R. Shover ; A. DeCarmine
Relation Between Endurance Limits and Thresholds in the Field of Gigacycle Fatigue / C. Bathias
A Size Effect on the Fatigue Crack Growth Rate Threshold of Alloy 718 / K. R. Garr ; G. C. Hresko, III
Effect of Geometry and Load History on Fatigue Crack Growth in Ti-62222 / H. O. Liknes ; R. R. Stephens
Increases in Fatigue Crack Growth Rate and Reductions in Fatigue Strength Due to Periodic Overstrains in Biaxial Fatigue Loading / A. Varvani-Farahani ; T. H. Topper
Analysis
Analysis of Fatigue Crack Closure During Simulated Threshold Testing / R. C. McClung
Analyses of Fatigue Crack Growth and Closure Near Threshold Conditions for Large-Crack Behavior / J. C. Newman, Jr.
The Mechanics of Moderately Stressed Cracks / F. O. Riemelmoser
Applications
Pitfalls to Avoid in Threshold Testing and Its Interpretation / R. W. Bush ; J. K. Donald ; R. J. Bucci
Use of Small Fatigue Crack Growth Analysis in Predicting the S-N Response of Cast Aluminium Alloys / M. J. Caton ; J. W. Jones ; J. E. Allison
Prediction of Fatigue Limits of Engineering Components Containing Small Defects / Y. Akiniwa ; K. Tanaka
Corrosion Fatigue Crack Growth Thresholds for Cast Nickel-Aluminum Bronze and Welds / E. J. Czyryca
Mean Stress and Environmental Effects on Near-Threshold Fatigue Crack Propagation on a Ti6246 Alloy at Room Temperature and 500[degree]C / Y. Chabanne
Component Design: The Interface Between Threshold and Endurance Limit / D. Taylor ; G. Wang
Near-Threshold Fatigue Strength of a Welded Steel Bridge Detail / P. Albrecht ; W. J. Wright
Fatigue Crack Growth Thresholds Measurements in Structural Materials / R. Lindstrom ; P. Lidaar ; B. Rosborg
Endurance Limit Design of Spheroidal Graphite Cast Iron Components Based on Natural Defects / G. Marquis ; R. Rabb ; L. Siivonen
Author Index
Subject Index
Overview
Mechanisms
Mechanisms and Modeling of Near-Threshold Fatigue Crack Propagation / J. Petit ; G. Henaff ; C. Sarrazin-Baudoux
3.

図書

図書
by Thomas J. Dolan, B.J. Lazan, Oscar J. Horger
出版情報: Ohio : American Society for Metals, c1954  121 p. ; 24 cm
所蔵情報: loading…
4.

図書

図書
editor, ASTM Committee E-9]
出版情報: Philadelphia : ASTM, c1959  v, 121 p. ; 24 cm
シリーズ名: ASTM special technical publication ; no. 237
所蔵情報: loading…
5.

図書

図書
the Society of Materials Science, Japan
出版情報: Amsterdam ; Tokyo : Elsevier, c1996  3 v. ; 27 cm
所蔵情報: loading…
6.

図書

図書
edited by R.P. Skelton
出版情報: London ; New York : Applied Science Publishers , New York : sole distributor in the USA and Canada, Elsevier Science Publishing, c1983  xii, 409 p. ; 23 cm
所蔵情報: loading…
7.

図書

図書
Thomas J. Dolan ... [et al.] ; edited by George Sines and J.L. Waisman
出版情報: New York : McGraw-Hill, 1959  x, 415 p. ; 24 cm
シリーズ名: University of California engineering extension series
所蔵情報: loading…
8.

図書

図書
by L. Sors ; English translation editor, S.E. Mitchell
出版情報: Oxford ; New York : Pergamon Press, [1971]  xiv, 96, 109 p. ; 24 cm
シリーズ名: International series of monographs in mechanical engineering ; v. 6
所蔵情報: loading…
9.

図書

図書
Jaroslav Polák
出版情報: Amsterdam : Elsevier, 1991  315 p. ; 25 cm
シリーズ名: Materials science monographs ; 63
所蔵情報: loading…
10.

図書

図書
John M. Barsom, Stanley T. Rolfe
出版情報: Englewood Cliffs, N.J. : Prentice-Hall, c1987  xx, 628 p. ; 24 cm
シリーズ名: Prentice-Hall international series in civil engineering and engineering mechanics
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Preface
Introduction to Fracture Mechanics / Part I:
Overview of the Problem of Fracture and Fatigue in Structures / Chapter 1:
Historical Background / 1.1:
Ductile vs. Brittle Behavior / 1.2:
Notch Toughness / 1.3:
Driving Force, K[subscript I] / 1.4:
Resistance Force, K[subscript c] / 1.4.2:
Fracture Mechanics Design / 1.5:
Fatigue and Stress-Corrosion Crack Growth / 1.6:
Fracture and Fatigue Control / 1.7:
Fracture Criteria / 1.8:
Fitness for Service / 1.9:
Case Studies / 1.10:
References / 1.11:
Stress Analysis for Members with Cracks--K[subscript I] / Chapter 2:
Introduction / 2.1:
Stress-Concentration Factor--k[subscript t] / 2.2:
Stress-Intensity Factor--K[subscript I] / 2.3:
Stress-Intensity-Factor Equations / 2.4:
Through-Thickness Crack / 2.4.1:
Single-Edge Notch / 2.4.2:
Embedded Elliptical or Circular Crack in Infinite Plate / 2.4.3:
Surface Crack / 2.4.4:
Cracks Growing from Round Holes / 2.4.5:
Single Crack in Beam in Bending / 2.4.6:
Holes or Cracks Subjected to Point or Pressure Loading / 2.4.7:
Estimation of Other K[subscript I] Factors / 2.4.8:
Superposition of Stress-Intensity Factors / 2.4.9:
Crack-Tip Deformation and Plastic Zone Size / 2.5:
Effective K[subscript I] Factor for Large Plastic Zone Size / 2.6:
J[subscript I] and [delta][subscript I] Driving Forces / 2.7:
J Integral / 2.7.1:
CTOD ([delta][subscript I]) / 2.7.2:
Summary / 2.8:
Appendix / 2.9:
Griffith, CTOD and J-Integral Theories / 2.10:
The Griffith Theory / 2.10.1:
Crack-Tip Opening Displacement (CTOD) and the Dugdale Model / 2.10.2:
J-Integral / 2.10.3:
Fracture Behavior / Part II:
Resistance Forces--K[subscript c]-J[subscript c]-[delta][subscript c] / Chapter 3:
General Overview / 3.1:
Service Conditions Affecting Fracture Toughness / 3.2:
Temperature / 3.2.1:
Loading Rate / 3.2.2:
Constraint / 3.2.3:
ASTM Standard Fracture Tests / 3.3:
Fracture Behavior Regions / 3.4:
General ASTM Fracture Test Methodology / 3.5:
Test Specimen Size / 3.5.1:
Test Specimen Notch / 3.5.2:
Test Fixtures and Instrumentation / 3.5.3:
Analysis of Results / 3.5.4:
Relations Between K-J-[delta] / 3.6:
Appendix A: K, J, CTOD ([delta]) Standard Test Method--E 1820 / 3.7:
Appendix B: Reference Temperature T[subscript o], to Establish a Master Curve Using K[subscript Jc] Values in Standard Test Method E 1921 / 3.9:
Effects of Temperature, Loading Rate, and Constraint / Chapter 4:
Effects of Temperature and Loading Rate on K[subscript Ic], K[subscript Ic](t), and K[subscript Id] / 4.1:
Effect of Loading Rate on Fracture Toughness / 4.3:
Effect of Constraint on Fracture Toughness / 4.4:
Loading-Rate Shift for Structural Steels / 4.5:
CVN Temperature Shift / 4.5.1:
K[subscript Ic]-K[subscript Id] Impact-Loading-Rate Shift / 4.5.2:
K[subscript Ic](t) Intermediate-Loading Rate Shift / 4.5.3:
Predictive Relationship for Temperature Shift / 4.5.4:
Significance of Temperature Shift / 4.5.5:
CVN-K[subscript Id]-K[subscript c] Correlations / 4.6:
General / 5.1:
Two-Stage CVN-K[subscript Id]-K[subscript c] Correlation / 5.2:
K[subscript Ic]-CVN Upper-Shelf Correlation / 5.3:
K[subscript Id] Value at NDT Temperature / 5.4:
Comparison of CVN-K[subscript Id]-K[subscript Ic]-J and [delta] Relations / 5.5:
Fracture-Mechanics Design / 5.6:
General Fracture-Mechanics Design Procedure for Terminal Failure / 6.1:
Design Selection of Materials / 6.3:
Design Analysis of Failure of a 260-In.-Diameter Motor Case / 6.4:
Design Example--Selection of a High-Strength Steel for a Pressure Vessel / 6.5:
Case I--Traditional Design Approach / 6.5.1:
Case II--Fracture-Mechanics Design / 6.5.2:
General Analysis of Cases I and II / 6.5.3:
Fatigue and Environmental Behavior / 6.6:
Introduction to Fatigue / Chapter 7:
Factors Affecting Fatigue Performance / 7.1:
Fatigue Loading / 7.3:
Constant-Amplitude Loading / 7.3.1:
Variable-Amplitude Loading / 7.3.2:
Fatigue Testing / 7.4:
Small Laboratory Tests / 7.4.1:
Fatigue-Crack-Initiation Tests / 7.4.1a:
Fatigue-Crack-Propagation Tests / 7.4.1b:
Tests of Actual or Simulated Structural Components / 7.4.2:
Some Characteristics of Fatigue Cracks / 7.5:
Fatigue-Crack Initiation / 7.6:
General Background / 8.1:
Effect of Stress Concentration on Fatigue-Crack Initiation / 8.2:
Generalized Equation for Predicting the Fatigue-Crack-Initiation Threshold for Steels / 8.3:
Methodology for Predicting Fatigue-Crack Initiation from Notches / 8.4:
Fatigue-Crack Propagation under Constant and Variable-Amplitude Load Fluctuation / 8.5:
Fatigue-Crack-Propagation Threshold / 9.1:
Constant Amplitude Load Fluctuation / 9.3:
Martensitic Steels / 9.3.1:
Ferrite-Pearlite Steels / 9.3.2:
Austenitic Stainless Steels / 9.3.3:
Aluminum and Titanium Alloys / 9.3.4:
Effect of Mean Stress on Fatigue-Crack Propagation Behavior / 9.4:
Effects on Cyclic Frequency and Waveform / 9.5:
Effects of Stress Concentration on Fatigue-Crack Growth / 9.6:
Fatigue-Crack Propagation in Steel Weldments / 9.7:
Design Example / 9.8:
Variable-Amplitude Load Fluctuation / 9.9:
Probability-Density Distribution / 9.9.1:
Fatigue-Crack Growth under Variable-Amplitude Loading / 9.9.2:
Single and Multiple High-Load Fluctuations / 9.9.3:
Variable-Amplitude Load Fluctuations / 9.9.4:
The Root-Mean-Square (RMS) Model / 9.9.4.1:
Fatigue-Crack Growth Under Variable-Amplitude Ordered-Sequence Cyclic Load / 9.9.4.2:
Fatigue-Crack Growth in Various Steels / 9.10:
Fatigue-Crack Growth Under Various Unimodal Distribution Curves / 9.11:
Fatigue and Fracture Behavior of Welded Components / 9.12:
Residual Stresses / 10.1:
Distortion / 10.3:
Stress Concentration / 10.4:
Weld Discontinuities and Their Effects / 10.5:
Fatigue Crack Initiation Sites / 10.5.1:
Fatigue Crack Behavior of Welded Components / 10.6:
Fatigue Behavior of Smooth Welded Components / 10.6.1:
Specimen Geometries and Test Methods / 10.6.1.1:
Effects of Surface Roughness / 10.6.1.2:
Fatigue Behavior of As-Welded Components / 10.6.2:
Effect of Geometry / 10.6.2.1:
Effect of Composition / 10.6.2.2:
Effect of Residual Stress / 10.6.2.3:
Effect of Postweld Heat Treatment / 10.6.2.4:
Methodologies of Various Codes and Standards / 10.7:
AASHTO Fatigue Design Curves for Welded Bridge Components / 10.7.1:
Variable Amplitude Cyclic Loads / 10.8:
Example Problem / 10.8.1:
Fracture-Toughness Behavior of Welded Components / 10.9:
General Discussion / 10.9.1:
Weldments / 10.9.2:
Fracture-Toughness Tests for Weldments / 10.9.3:
K[subscript Iscc] and Corrosion Fatigue Crack Initiation and Crack Propagation / 10.10:
Stress-Corrosion Cracking / 11.1:
Fracture-Mechanics Approach / 11.2.1:
Experimental Procedures / 11.2.2:
K[subscript Iscc]--A Material Property / 11.2.3:
Test Duration / 11.2.4:
K[subscript Iscc] Data for Some Material-Environment Systems / 11.2.5:
Crack-Growth-Rate Tests / 11.2.6:
Corrosion-Fatigue Crack Initiation / 11.3:
Test Specimens and Experimental Procedures / 11.3.1:
Corrosion-Fatigue-Crack-Initiation Behavior of Steels / 11.3.2:
Fatigue-Crack-Initiation Behavior / 11.3.2.1:
Corrosion Fatigue Crack-Initiation Behavior / 11.3.2.2:
Effect of Cyclic-Load Frequency / 11.3.2.3:
Effect of Stress Ratio / 11.3.2.4:
Long-Life Behavior / 11.3.2.5:
Generalized Equation for Predicting the Corrosion-Fatigue Crack-Initiation Behavior for Steels / 11.3.2.6:
Corrosion-Fatigue-Crack Propagation / 11.4:
Corrosion-Fatigue Crack-Propagation Threshold / 11.4.1:
Corrosion-Fatigue-Crack-Propagation Behavior Below K[subscript Iscc] / 11.4.2:
Effect of Cyclic-Stress Waveform / 11.4.3:
Environmental Effects During Transient Loading / 11.4.4:
Generalized Corrosion-Fatigue Behavior / 11.4.5:
Prevention of Corrosion-Fatigue Failures / 11.5:
Fracture and Fatigue Control Plan / 11.6:
Identification of the Factors / 12.3.1:
Establishment of the Relative Contribution / 12.3.2:
Determination of Relative Efficiency / 12.3.3:
Recommendation of Specific Design Considerations / 12.3.4:
Fracture Control Plan for Steel Bridges / 12.4:
Design / 12.4.1:
Fabrication / 12.4.3:
Material / 12.4.4:
AASHTO Charpy V-Notch Requirements / 12.4.5:
Verification of the AASHTO Fracture Toughness Requirement / 12.4.6:
High-Performance Steels / 12.4.7:
Comprehensive Fracture-Control Plans--George R. Irwin / 12.5:
General Levels of Performance / 12.6:
Consequences of Failure / 13.3:
Original 15-ft-lb CVN Impact Criterion for Ship Steels / 13.4:
Transition-Temperature Criterion / 13.5:
Through-Thickness Yielding Criterion / 13.6:
Leak-Before-Break Criterion / 13.7:
Fracture Criterion for Steel Bridges / 13.8:
Use of Fracture Mechanics in Fitness-for-Service Analysis / 13.9:
Effect of Loading Rate / 14.2.1:
Effect of Constraint / 14.2.3:
Effect of Many Factors / 14.2.4:
Existing Fitness-for-Service Procedures / 14.3:
PD 6493 / 14.3.1:
ASME Section XI / 14.3.3:
API 579 / 14.3.4:
Benefits of a Proof or Hydro-Test to Establish Fitness for Continued Service / 14.4:
Difference Between Initiation and Arrest (Propagation) Fracture Toughness Behavior / 14.5:
Applications of Fracture Mechanics--Case Studies / 14.6:
Importance of Fracture Toughness and Proper Fabrication Procedures--The Bryte Bend Bridge / Chapter 15:
AASHTO Fracture Control Plan for Steel Bridges / 15.1:
Bryte Bend Bridge Brittle Fracture / 15.3:
Design Aspects of the Bryte Bend Bridge as Related to the AASHTO Fracture Control Plan (FCP) / 15.4:
Adequacy of the Current AASHTO Fracture Control Plan / 15.5:
Implied vs. Guaranteed Notch Toughness / 15.5.1:
Effect of Details on Fatigue Life / 15.5.2:
Importance of Constraint and Loading--The Ingram Barge / 15.5.3:
Effect of Constraint on Structural Behavior / 16.1:
Constraint Experiences in the Ship Industry / 16.3:
Ingram Barge Failure / 16.4:
Importance of Loading and Inspection--Trans Alaska Pipeline Service Oil Tankers / 16.5:
Background / 17.1:
Fracture Mechanics Methodology / 17.3:
Application of Methodology to a Detail in an Oil Tanker / 17.4:
Identification of Critical Details / 17.4.1:
Fracture Toughness / 17.4.2:
Stress Intensity Factors and Critical Crack Size for Critical Details / 17.4.3:
Inspection Capability for Initial Crack Size, a[subscript o] / 17.4.4:
Determination of Histogram for Fatigue Loading / 17.4.5:
Fatigue Crack Propagation in Bottom Shell Plates / 17.4.6:
Effect of Reduced Fatigue Loading / 17.5:
Importance of Proper Analysis, Fracture Toughness, Fabrication, and Loading on Structural Behavior--Failure Analysis of a Lock-and-Dam Sheet Piling / 17.6:
Description of the Failure / 18.1:
Steel Properties / 18.3:
Failure Analysis of Sheet 55 / 18.4:
Importance of Loading Rate on Structural Performance--Burst Tests of Steel Casings / 18.5:
Material and Experimental Procedures / 19.1:
Experimental Procedure / 19.3:
Failure Analysis / 19.4:
Metallographic Analysis / 19.5:
Examination of API Specifications for J-55 and K-55 Casing / 19.6:
Problems / 19.7:
Index
Foreword
Preface
Introduction to Fracture Mechanics / Part I:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼