close
1.

図書

図書
edited by Eugenia Buzaneva and Peter Scharff
出版情報: Boston : Kluwer Academic Publishers, c2004  xii, 482 p. ; 25 cm
シリーズ名: NATO science series ; Series II . Mathematics, physics, and chemistry ; v. 152
所蔵情報: loading…
目次情報: 続きを見る
Preface
Photograph of participants
Modeling and computer simulation of characteristics nanosystems / I:
Optical properties of small-radius SWNTs within a tight-binding model / V. Popov
The electronic structure of nanotubes and the topological arrangements of carbon atoms / I. Lazslo
Irradiation effect on the electron transport properties of single-walled carbon nanotube / Yu.I. Prylutskyy, et al.
Calculation of the density profile of liquid located in the multi-walled carbon nanotube / D.A. Gavryushenko, et al.
Small metal clusters: ab initio calculated bare clusters and models within fullerene cages / V. Gurin
Nanotechnology of building blocks and integrated nanosystems / II:
Nanoparticle reactions on chip / M. Kohler, et al.
Electrochemical charging of nanocarbons: fullerenes, nanotubes, peapods / L. Kavan ; L. Dunsch
Nano-encapsulation of fullerene in dendrimers / Y. Rio, et al.
Irradiation-controlled adsorption and organisation of biomolecules on surfaces: from the nanometric to the mesoscopic level / G. Marletta ; C. Satriano
Immobilization of protein molecules on solid surface for biosensor applications / G. Zhavnerko, et al.
Mesoporous aluminosilicates as a host and reactor for preparation of ordered metal nanowires / A. Eliseev, et al.
Single and assembled molecules, nanoparticles on surface and interface investigations / III:
Scanning probe microscopy of biomacromolecules: instrumentation and experiments / I. Yaminsky ; G. Kiselev
Surface science tools and their application on nanosystems like C60 to indium phosphide / J.A. Schaefer, et al.
Polarized Raman spectroscopy of single layer and multilayer Ge/Si(001) quantum dot heterostructures / A.V. Baranov, et al.
Fundamental properties of carbon integrated nanosystems / IV:
Nanosystems of polymerized fullerenes and carbon-nanotubes / P. Scharff ; S. Cui
Synthesis and characterization of C60- and C70 polymer phases / L. Carta-Abelmann, et al.
The nanospace inside single wall carbon nanotubes / H. Kuzmany, et al.
Mechanical properties of carbon thin films / S. Tamulevicius, et al.
Fundamental properties of silicon integrated nanosystems / V:
Thin carbon layers on nanostructured silicon: properties and applications / Angelescu, et al.
ID periodic structures obtained by deep anisotropic etching of silicon / E. Astrova, et al.
Diode Shottky systems on Al - nanosilicon interface layer - Si / G. Vorobets
Multifunctional applications of nanosystems / VI:
Moletronics / VI.I:
Nano-bio electronic devices based on DNA bases and proteins / R. Rinaldi, et al.
DNA, DNA/nanocarbon and macrocyclic metal complex/C60 molecular building blocks for nanosystems: charge transport and sensing / E. Buzeneva, et al.
Electronics and photonics / VI.II:
Silicon nanocrystal memory devices / A. Nassiopoulou, et al.
On the route towards a monolithically integrated silicon photonics / N. Daldosso ; L. Pavesi
Photoluminescent nanosilicon systems / V. Makara
Optical characterization of opal photonic hetero-crystals / S. Romanov
Spintronics and magneto-optoelectronics / VI.III:
Magnetism in polymerized fullerenes / T. Makarova
Application of the electronic properties of carbon nanotubes: computation of the magnetic properties and the 13C NMR shifts / S. Latil, et al.
Nanotube spintronics: magnetic systems based on carbon nanotubes / C.M. Schneider, et al.
Spin coherence and manipulation in Si/SiGe Quantum wells / W. Jantsch ; Z. Wilamowski
Fundamental properties of ferromagnetic micro- and nanostructured films for application in optoelectronics / V. Sohatsky
VI.IV: Sensor nanosystems
Porous silicon for chemical sensors / C. Tsamis ; A. Nassiopoulou
Silicon micromachined sensors for gas detection / C. Moldovan, et al.
Microporous zeolite membranes - a useful tool for gas sensing systems / D. Nipprasch, et al.
Geomagnetic electrochemical biosensors / A. Erdem ; J. Wang
Nanocapsules - a novel tool for medicine and science / S. Krol, et al.
Biological molecule conformations probed and enhanced by metal and carbon nanostructures: SEIRA, AFM an
Preface
Photograph of participants
Modeling and computer simulation of characteristics nanosystems / I:
2.

図書

図書
Guozhong Cao, Ying Wang
出版情報: Singapore : World Scientific, c2011  xiii, 581 p. ; 23 cm
シリーズ名: World scientific series in nanoscience and nanotechnology ; v. 2
所蔵情報: loading…
目次情報: 続きを見る
Preface to the Second Edition
Introduction / Chapter 1:
Emergence of Nanotechnology / 1.1:
Bottom-Up and Top-Down Approaches / 1.3:
Challenges in Nanotechnology / 1.4:
Scope of the Book / 1.5:
References
Physical Chemistry of Solid Surfaces / Chapter 2:
Surface Energy / 2.1:
Chemical Potential as a Function of Surface Curvature / 2.3:
Electrostatic Stabilization / 2.4:
Surface charge density / 2.4.1:
Electric potential at the proximity of solid surface / 2.4.2:
Van der Waals attraction potential / 2.4.3:
Interactions between two particles: DLVO theory / 2.4.4:
Steric Stabilization / 2.5:
Solvent and polymer / 2.5.1:
Interactions between polymer layers / 2.5.2:
Mixed steric and electric interactions / 2.5.3:
Summary / 2.6:
Zero-Dimensional Nanostructures: Nanoparticles / Chapter 3:
Nanoparticles Through Homogeneous Nucleation / 3.1:
Fundamentals of homogeneous nucleation / 3.2.1:
Subsequent growth of nuclei / 3.2.2:
Growth controlled by diffusion / 3.2.2.1:
Growth controlled by surface process / 3.2.2.2:
Synthesis of metallic nanoparticles / 3.2.3:
Influences of reduction reagents / 3.2.3.1:
Influences by other factors / 3.2.3.2:
Influences of polymer stabilizer / 3.2.3.3:
Synthesis of semiconductor nanoparticles / 3.2.4:
Synthesis of oxide nanoparticles / 3.2.5:
Introduction to sol-gel processing / 3.2.5.1:
Forced hydrolysis / 3.2.5.2:
Controlled release of ions / 3.2.5.3:
Vapor phase reactions / 3.2.6:
Solid-state phase segregation / 3.2.7:
Nanoparticles Through Heterogeneous Nucleation / 3.3:
Fundamentals of heterogeneous nucleation / 3.3.1:
Synthesis of nanoparticles / 3.3.2:
Kinetically Confined Synthesis of Nanoparticles / 3.4:
Synthesis inside micelles or using microemulsions / 3.4.1:
Aerosol synthesis / 3.4.2:
Growth termination / 3.4.3:
Spray pyrolysis / 3.4.4:
Template-based synthesis / 3.4.5:
Epitaxial Core-Shell Nanoparticles / 3.5:
One-Dimensional Nanostructures: Nanowires and Nanorods / 3.6:
Spontaneous Growth / 4.1:
Evaporation (dissolution)-condensation growth / 4.2.1:
Fundamentals of evaporation (dissolution)-condensation growth / 4.2.1.1:
Evaporation-condensation growth / 4.2.1.2:
Dissolution-condensation growth / 4.2.1.3:
Vapor (or solution)-liquid-solid (VLS or SLS) growth / 4.2.2:
Fundamental aspects of VLS and SLS growth / 4.2.2.1:
VLS growth of various nanowires / 4.2.2.2:
Control of the size of nanowires / 4.2.2.3:
Precursors and catalysts / 4.2.2.4:
Solution-liquid-solid growth / 4.2.2.5:
Stress-induced recrystallization / 4.2.3:
Template-Based Synthesis / 4.3:
Electrochemical deposition / 4.3.1:
Electrophoretic deposition / 4.3.2:
Template filling / 4.3.3:
Colloidal dispersion filling / 4.3.3.1:
Melt and solution filling / 4.3.3.2:
Chemical vapor deposition / 4.3.3.3:
Deposition by centrifugation / 4.3.3.4:
Converting through chemical reactions / 4.3.4:
Electrospinning / 4.4:
Lithography / 4.5:
Two-Dimensional Nanostructures: Thin Films / 4.6:
Fundamentals of Film Growth / 5.1:
Vacuum Science / 5.3:
Physical Vapor Deposition (PVD) / 5.4:
Evaporation / 5.4.1:
Molecular beam epitaxy (MBE) / 5.4.2:
Sputtering / 5.4.3:
Comparison of evaporation and sputtering / 5.4.4:
Chemical Vapor Deposition (CVD) / 5.5:
Typical chemical reactions / 5.5.1:
Reaction kinetics / 5.5.2:
Transport phenomena / 5.5.3:
CVD methods / 5.5.4:
Diamond films by CVD / 5.5.5:
Atomic Layer Deposition / 5.6:
Superlattices / 5.7:
Self-Assembly / 5.8:
Monolayers of organosilicon or alkylsilane derivatives / 5.8.1:
Monolayers of alkanethiols and sulfides / 5.8.2:
Monolayers of carboxylic acids, amines, and alcohols / 5.8.3:
Langmuir-Blodgett Films / 5.9:
Electrochemical Deposition / 5.10:
Sol-Gel Films / 5.11:
Special Nanomaterials / 5.12:
Carbon Fullerenes and Nanotubes / 6.1:
Carbon fullerenes / 6.2.1:
Fullerene-derived crystals / 6.2.2:
Carbon nanotubes / 6.2.3:
Micro and Mesoporous Materials / 6.3:
Ordered mesoporous structures / 6.3.1:
Random mesoporous structures / 6.3.2:
Crystalline microporous materials: Zeolites / 6.3.3:
Core-Shell Structures / 6.4:
Metal-oxide structures / 6.4.1:
Metal-polymer structures / 6.4.2:
Oxide-polymer nanostructures / 6.4.3:
Organic-Inorganic Hybrids / 6.5:
Class 1 hybrids / 6.5.1:
Class 2 hybrids / 6.5.2:
Intercalation Compounds / 6.6:
Nanocomposites and Nanograined Materials / 6.7:
Inverse Opals / 6.8:
Bio-Induced Nanomaterials / 6.9:
Nanostructures Fabricated by Physical Techniques / 6.10:
Photolithography / 7.1:
Phase-shifting photolithography / 7.2.2:
Electron beam lithography / 7.2.3:
X-ray lithography / 7.2.4:
Focused ion beam (FIB) lithography / 7.2.5:
Neutral atomic beam lithography / 7.2.6:
Nanomanipulation and Nanolithography / 7.3:
Scanning tunneling microscopy (STM) / 7.3.1:
Atomic force microscopy (AFM) / 7.3.2:
Near-field scanning optical microscopy (NSOM) / 7.3.3:
Nanomanipulation / 7.3.4:
Nanolithography / 7.3.5:
Soft Lithography / 7.4:
Microcontact printing / 7.4.1:
Molding / 7.4.2:
Nanoimprint / 7.4.3:
Dip-pen nanolithography / 7.4.4:
Assembly of Nanoparticles and Nanowires / 7.5:
Capillary forces / 7.5.1:
Dispersion interactions / 7.5.2:
Shear-force-assisted assembly / 7.5.3:
Electric-field-assisted assembly / 7.5.4:
Covalently linked assembly / 7.5.5:
Gravitational-field-assisted assembly / 7.5.6:
Template-assisted assembly / 7.5.7:
Other Methods for Microfabrication / 7.6:
Characterization and Properties of Nanomaterials / 7.7:
Structural Characterization / 8.1:
X-ray diffraction (XRD) / 8.2.1:
Small angle X-ray scattering (SAXS) / 8.2.2:
Scanning electron microscopy (SEM) / 8.2.3:
Transmission electron microscopy (TEM) / 8.2.4:
Scanning probe microscopy (SPM) / 8.2.5:
Gas adsorption / 8.2.6:
Chemical Characterization / 8.3:
Optical spectroscopy / 8.3.1:
Electron spectroscopy / 8.3.2:
Ion spectrometry / 8.3.3:
Physical Properties of Nanomaterials / 8.4:
Melting points and lattice constants / 8.4.1:
Mechanical properties / 8.4.2:
Optical properties / 8.4.3:
Surface plasmon resonance / 8.4.3.1:
Quantum size effects / 8.4.3.2:
Electrical conductivity / 8.4.4:
Surface scattering / 8.4.4.1:
Change of electronic structure / 8.4.4.2:
Quantum transport / 8.4.4.3:
Effect of microstructure / 8.4.4.4:
Ferroelectrics and dielectrics / 8.4.5:
Superparamagnetism / 8.4.6:
Applications of Nanomaterials / 8.5:
Molecular Electronics and Nanoelectronics / 9.1:
Nanobots / 9.3:
Biological Applications of Nanoparticles / 9.4:
Catalysis by Gold Nanoparticles / 9.5:
Bandgap Engineered Quantum Devices / 9.6:
Quantum well devices / 9.6.1:
Quantum dot devices / 9.6.2:
Nanomechanics / 9.7:
Carbon Nanotube Emitters / 9.8:
Energy Applications of Nanomaterials / 9.9:
Photoelectrochemical cells / 9.9.1:
Lithium-ion rechargeable batteries / 9.9.2:
Hydrogen storage / 9.9.3:
Thermoelectrics / 9.9.4:
Environmental Applications of Nanomaterials / 9.10:
Photonic Crystals and Plasmon Waveguides / 9.11:
Photonic crystals / 9.11.1:
Plasmon waveguides / 9.11.2:
Appendices / 9.12:
Index
Preface to the Second Edition
Introduction / Chapter 1:
Emergence of Nanotechnology / 1.1:
3.

図書

図書
Pavel Broz
出版情報: Cambridge : RSC Publishing, 2010  xv, 372 p. ; 24 cm
シリーズ名: RSC nanoscience & nanotechnology ; 9
所蔵情報: loading…
目次情報: 続きを見る
Basics / 1:
Polymer Materials for Biomedical Applications / Violeta Malinova ; Wolfgang MeierChapter 1:
Introduction / 1.1:
Polymers as biomaterials / 1.2:
Natural and Synthetic Polymers / 1.2.1:
Complicated Polymer Architectures / 1.2.2:
Factors Influencing the Polymer's Applicability in Biomedical Fields / 1.3:
References
Strategies for Transmembrane Passage of Polymer-based Nanostructures / Emmanuel O. AkalaChapter 2:
Peptides and Proteins Delivery / 2.1:
Gene Delivery / 2.1.2:
General Vaccines Delivery / 2.1.3:
Nanoparticles / 2.2:
Gastrointestinal Transepithelial Permeability of Polymer-based Nanostructures / 2.3:
Mechanisms of Transepithelial Transport of Nanoparticles / 2.3.2:
Strategies for Transepithelial Permeability of Polymer-based Nanostructures through the Paracellular Pathway / 2.3.3:
Strategies for Transepithelial Permeability of Polymer-based Nanostructures through the Transcellular Pathway / 2.3.4:
Strategy Based on the Understanding and the Use of the Right Animal Model and Conversion of Epithelial Cells to M Cells / 2.3.5:
Strategies for Gastrointestinal Delivery of Nanoparticles Using Bio-(Muco-) Adhesion Mechanism / 2.3.6:
The Use Permeability or Absorption Enhancers as a Strategy for Transepithelial Permeability of Nanoparticles / 2.3.7:
Strategy Based on the Influence of Particle Size on Transepithelial Permeability of Nanoparticles / 2.3.8:
Strategies Based on the Influence of Particle Surface Properties (Charge and Hydrophobicity) on Transepithelial Permeability of Nanoparticles / 2.3.9:
Strategies Based on Protein Transduction / 2.3.10:
Strategy for Permeability of Nanostructures Across Other Mucosal Epithelia / 2.4:
Transepithelial Permeability of Polymer-based Nanostructures Across the Lung Epithelium / 2.4.1:
Nasal Route / 2.4.2:
Ophthalmic Route / 2.4.3:
Strategies for Permeability of Polymer-based Nanostructures Across the Blood-Brain Barrier / 2.5:
Surfactant / 2.5.1:
Surface Charge / 2.5.2:
Particle Size / 2.5.3:
Antibody for Targeting the Blood-Brain Barrier / 2.5.4:
Lectin for Targeting the Blood-Brain Barrier / 2.5.5:
Nanogel for Targeted Delivery of Drugs Aand Macromolecules to the Brain / 2.5.6:
Nanoparticle Engineering for the Lymphatic System and Lymph Node Targeting / Seyed M. MoghimiChapter 3:
Nanoparticle Size / 3.1:
Nanoparticle Surface Engineering / 3.3:
Surface Modification with Serum / 3.3.1:
Surface Manipulation with Block Copolymers / 3.3.2:
Recent Trends in Vesicular Surface Engineering / 3.4:
Platform Nanotechnologies / 3.5:
Conclusions / 3.6:
Strategies for Intracellular Delivery of Polymer-based Nanosystems / Jaspreet K. Vasir ; Chiranjeevi Peetla ; Vinod LabhasetwarChapter 4:
Barriers to Cellular Transport of Nanosystems / 4.1:
Nanosystem-Cell Interactions and Cellular Internalization / 4.3:
Intracellular Trafficking of Nanosystems / 4.4:
Challenges / 4.5:
Strategies for Triggered Release from Polymer-based Nanostructures / Lucy Kind ; Mariusz GrzelakowskiChapter 5:
Stimuli Applied for Triggered Release / 5.1:
Temperature / 5.2.1:
pH / 5.2.2:
Other Stimuli / 5.2.3:
Polymer-Based Nanostructures for Diagnostic Applications / 2:
Polymeric Nanoparticles for Medical Imaging / Egidijus E. UzgirisChapter 6:
Polymeric Particles in Medical Imaging / 6.1:
MRI Contrast Agents / 6.1.2:
Type I, Linear Chains, Polylysine Backbone / 6.2:
Motivation / 6.2.1:
Synthesis and Conformation / 6.2.2:
Role of Electric Dipole Centers on the Polymer Chain / 6.2.3:
Scaling Law / 6.2.4:
Trans-endothelial Transport: the New Mechanism / 6.2.5:
Tumor Assessment / 6.2.6:
Type I, Linear Chains, Dextran Backbone / 6.3:
Motivation and Early Results / 6.3.1:
DOTA-lmked Dextran / 6.3.2:
New DTPA-dextran Constructs / 6.3.3:
Dextran Constructs for Nuclear and Optical Imaging / 6.3.4:
Summary / 6.3.5:
Type II, Dendrimers and Globular Particles / 6.4:
Structures and Synthesis of Principal Classes of Dendrimers for Imaging / 6.4.1:
Principal Characteristics of DTPA-dendrimers / 6.4.3:
The DOTA-linked Dendrimer, Gadomer 17 / 6.4.4:
Dendrimer Elimination and Safety / 6.4.5:
Applications / 6.4.6:
Other Constructs, Targeting, and CT / 6.4.7:
Globular Agents and Endothelial Pore Size Distribution / 6.5:
Tumor Endothelial Leakiness, Large Pore Dominance Model / 6.5.1:
Theoretical / 6.5.2:
Pore Size Distribution in Rat Mammary Tumors / 6.5.3:
PEG-linked Gd-DTPA-polylysine / 6.5.4:
Iron Oxide Nanopaiticles / 6.6:
Summary Overview / 6.6.1:
Developments / 6.6.2:
Labeling of Cells / 6.6.3:
Cell Trafficking / 6.6.4:
Cell Labeling II and Detection Limits / 6.6.5:
Lymphography / 6.6.6:
Gene Expression / 6.6.7:
Targeting / 6.6.8:
Polymeric Vesicles/Capsules for Diagnostic Applications in Medicine / Margaret A. Wheatley6.6.9:
Ex vivo Diagnostics / 7.1:
Polymeric Nanoparticles / 7.2.1:
Diagnostic Imaging / 7.3:
X-Ray / 7.3.1:
Magnetic Resonance Imaging-contrast / 7.3.2:
Ultrasound Contrast Agents / 7.3.3:
Optical Imaging / 7.3.4:
Radionuclide Imaging / 7.3.5:
Conclusion / 7.4:
Polymer-Based Nanostructures for Therapeutic Applications / 3:
Polymeric Micelles for Therapeutic Applications in Medicine / Vladimir P. TorchilinChapter 8:
Solubilization by Micelles / 8.1:
Polymeric Micelles / 8.3:
Micelle Preparation, Morphology, and Drug Loading / 8.4:
Drug-loaded Polymeric Micelles In vivo: Targeted and Stimuli-sensitive Micelles / 8.5:
Other Applications of Polymeric Micelles / 8.6:
Micelles in Immunology / 8.6.1:
Micelles as Carriers of Contrast Agents / 8.6.2:
Anti-Cancer Polymersomes / Shenshen Cai ; David A. Christian ; Manu Tewari ; Tamara Minko ; Dennis E. Discher8.7:
Polymersome Structure and Properties / 9.1:
Controlled Release Polymersomes / 9.3:
Small Molecule Chemotherapeutics for Shrinking Tumors / 9.4:
Efforts to Target Polymersomes / 9.5:
Conclusions and Opportune Comparisons to Copolymer Micelles / 9.6:
Polymer-Based Nanostructures with an Intelligent Functionality / 4:
Polymer-based Nanoreactors for Medical Applications / An Ranquin ; Caroline De Vocht ; Patrick Van GelderChapter 10:
The Nanoreactor Toolbox / 10.1:
Polymers / 10.2.1:
Channels and Enzymes used in Nanoreactors / 10.2.2:
Preparation Methods / 10.2.3:
Functionalized Reactors / 10.3:
Targeting Nanoreactors to Different Tissues / 10.3.1:
Controlling the Activity of the Nanoreactor / 10.3.2:
Cancer Therapy / 10.4:
Diagnostic Tools / 10.4.2:
Brain Delivery / 10.4.3:
Enzyme Replacement Therapy / 10.4.4:
Biosensors / 10.4.5:
Production of Crystals / 10.4.6:
Open Questions / 10.5:
Toxicity / 10.5.1:
Polymer Chemistry / 10.5.2:
Vesicle Shape / 10.5.3:
Endocytotic Mechanisms / 10.5.4:
Nanoparticles for Cancer Diagnosis and Therapy / Yong-Eun Lee Koo ; Daniel A. Orringer ; Raoul KopelmanChapter 11:
Cancer Facts/Problems / 11.1:
Nanoparticle Advantages for Cancer Therapy and Imaging / 11.1.2:
Nanoparticles for Therapy / 11.2:
Chemotherapy / 11.2.1:
Radiotherapy / 11.2.2:
Photo-dynamic Therapy / 11.2.3:
Thermotherapy / 11.2.4:
Nanoparticles for Imaging / 11.3:
Magnetic Resonance Imaging / 11.3.1:
X-Ray Computed Tomography / 11.3.2:
Bimodal Imaging: MRI and Fluorescence Imaging / 11.3.4:
Multitasking Nanoparticles for Integrated Imaging and Therapy / 11.4:
Summary and Future Challenges / 11.5:
Acknowledgements / 11.6:
Subject Index
Basics / 1:
Polymer Materials for Biomedical Applications / Violeta Malinova ; Wolfgang MeierChapter 1:
Introduction / 1.1:
4.

図書

図書
David K. Ferry and Stephen M. Goodnick
出版情報: Cambridge, U.K. ; New York : Cambridge University Press, 1997  xi, 512 p. ; 26 cm
シリーズ名: Cambridge studies in semiconductor physics and microelectronic engineering ; 6
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Quantum confined systems / 2:
Transmission in nanostructures / 3:
Quantum dots and single electron phenomena / 4:
Interference in diffusive transport / 5:
Temperature decay of fluctuations / 6:
Non-equilibrium transport and nanodevices / 7:
Introduction / 1:
Quantum confined systems / 2:
Transmission in nanostructures / 3:
5.

図書

図書
edited by Tapan Chatterji
出版情報: Dordrecht : Kluwer Academic Publishers, c2004  xv, 447 p. ; 25 cm
所蔵情報: loading…
6.

図書

図書
David K. Ferry, Stephen M. Goodnick, Jonathan Bird
出版情報: Cambridge [U.K.] : Cambridge University Press, 2009  x, 659 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgements
Introduction / 1:
Nanostructures: the impact / 1.1:
Mesoscopic observables in nanostructures / 1.2:
Space and time scales / 1.3:
Nanostructures and nanodevices / 1.4:
An introduction to the subsequent chapters / 1.5:
What is omitted / 1.6:
Quantum confined systems / 2:
Nanostructure materials / 2.1:
Quantization in heterojunction systems / 2.2:
Lateral confinement: quantum wires and quantum dots / 2.3:
Electronic states in quantum wires and dots / 2.4:
Magnetic field effects in quantum confined systems / 2.5:
Screening and collective excitations in low-dimensional systems / 2.6:
Homogeneous transport in low-dimensional systems / 2.7:
Transmission in nanostructures / 3:
Tunneling in planar barrier structures / 3.1:
Current in resonant tunneling diodes / 3.2:
Landauer formula / 3.3:
The multi-channel case / 3.4:
Transport in quantum waveguide structures / 3.5:
The quantum Hall effects / 4:
The integer quantum Hall effect in two-dimensional electron systems / 4.1:
Edge-state propagation in nanostructures / 4.2:
The fractional quantum Hall effect / 4.3:
The many-body picture / 4.4:
Ballistic transport in quantum wires / 5:
Conductance quantization in quantum point contacts / 5.1:
Non-integer conductance quantization in quantum point contacts / 5.2:
Some ballistic device concepts / 5.3:
Quantum dots / 6:
Fundamentals of single-electron tunneling / 6.1:
Single-electron tunneling in semiconductor quantum dots / 6.2:
Coupled quantum dots as artificial molecules / 6.3:
Quantum interference due to spatial wave function coherence in quantum dots / 6.4:
Weakly disordered systems / 7:
Disordered semiconductors / 7.1:
Conductivity / 7.2:
Weak localization / 7.3:
Universal conductance fluctuations / 7.4:
Green's functions in disordered materials / 7.5:
Temperature decay of fluctuations / 8:
Temperature decay of coherence / 8.1:
The role of temperature on the fluctuations / 8.2:
Electron-electron interaction effects / 8.3:
Nonequilibrium transport and nanodevices / 8.4:
Nonequilibrium transport in mesoscopic structures / 9.1:
Semiconductor nanodevices in the real world / 9.2:
Quantum simulations via the scattering matrix / 9.3:
Real-time Green's functions / 9.4:
Index
Preface
Acknowledgements
Introduction / 1:
7.

図書

図書
Gabor L. Hornyak ... [et al.]
出版情報: Boca Raton, Fl. ; London : CRC : Taylor & Francis, c2009  xxxiv, 1593 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
The Perspective
The Tools
The Physics
The Chemistry
The Biology
The Next Step
The Engineering
The Materials
Devices and Applications
Overview
The Perspective
The Tools
The Physics
8.

図書

図書
Thomas Heinzel
出版情報: Weinheim : Wiley-VCH, c2003  337 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Preliminary remarks / 1.1:
Mesoscopic transport / 1.2:
Ballistic transport / 1.2.1:
The quantum Hall effect and Shubnikov - de Haas oscillations / 1.2.2:
Size quantization / 1.2.3:
Phase coherence / 1.2.4:
Single electron tunnelling and quantum dots / 1.2.5:
Superlattices / 1.2.6:
Samples and experimental techniques / 1.2.7:
An Update of Solid State Physics / 2:
Crystal structures / 2.1:
Electronic energy bands / 2.2:
Occupation of energy bands / 2.3:
The electronic density of states / 2.3.1:
Occupation probability and chemical potential / 2.3.2:
Intrinsic carrier concentration / 2.3.3:
Envelope wave functions / 2.4:
Doping / 2.5:
Diffusive transport and the Boltzmann equation / 2.6:
The Boltzmann equation / 2.6.1:
The conductance predicted by the simplified Boltzmann equation / 2.6.2:
The magneto-resistivity tensor / 2.6.3:
Scattering mechanisms / 2.7:
Screening / 2.8:
Surfaces, Interfaces, and Layered Devices / 3:
Electronic surface states / 3.1:
Surface states in one dimension / 3.1.1:
Surfaces of 3-dimensional crystals / 3.1.2:
Band bending and Fermi level pinning / 3.1.3:
Semiconductor-metal interfaces / 3.2:
Band alignment and Schottky barriers / 3.2.1:
Ohmic contacts / 3.2.2:
Semiconductor heterointerfaces / 3.3:
Field effect transistors and quantum wells / 3.4:
The silicon metal-oxide-semiconductor FET (Si-MOSFET) / 3.4.1:
The Ga[Al]As high electron mobility transistor (GaAs-HEMT) / 3.4.2:
Other types of layered devices / 3.4.3:
Quantum confined carriers in comparison to bulk carriers / 3.4.4:
Experimental Techniques / 4:
Sample fabrication / 4.1:
Single crystal growth / 4.1.1:
Growth of layered structures / 4.1.2:
Lateral patterning / 4.1.3:
Metallization / 4.1.4:
Bonding / 4.1.5:
Elements of cryogenics / 4.2:
Properties of liquid helium / 4.2.1:
Helium cryostats / 4.2.2:
Electronic measurements on nanostructures / 4.3:
Sample holders / 4.3.1:
Application and detection of electronic signals / 4.3.2:
Important Quantities in Mesoscopic Transport / 5:
Magnetotransport Properties of Quantum Films / 6:
Landau quantization / 6.1:
2DEGs in perpendicular magnetic fields / 6.1.1:
The chemical potential in strong magnetic fields / 6.1.2:
The quantum Hall effect / 6.2:
Phenomenology / 6.2.1:
Origin of the integer quantum Hall effect / 6.2.2:
The quantum Hall effect and three dimensions / 6.2.3:
Elementary analysis of Shubnikov-de Haas oscillations / 6.3:
Some examples of magnetotransport experiments / 6.4:
Quasi-two-dimensional electron gases / 6.4.1:
Mapping of the probability density / 6.4.2:
Displacement of the quantum Hall plateaux / 6.4.3:
Parallel magnetic fields / 6.5:
Quantum Wires and Quantum Point Contacts / 7:
Diffusive quantum wires / 7.1:
Basic properties / 7.1.1:
Boundary scattering / 7.1.2:
Ballistic quantum wires / 7.2:
Conductance quantization in QPCs / 7.2.1:
Magnetic field effects / 7.2.3:
The "0.7 structure" / 7.2.4:
Four-probe measurements on ballistic quantum wires / 7.2.5:
The Landauer-Buttiker formalism / 7.3:
Edge states / 7.3.1:
Edge channels / 7.3.2:
Further examples of quantum wires / 7.4:
Conductance quantization in conventional metals / 7.4.1:
Carbon nanotubes / 7.4.2:
Quantum point contact circuits / 7.5:
Non-ohmic behavior of collinear QPCs / 7.5.1:
QPCs in parallel / 7.5.2:
Concluding remarks / 7.6:
Electronic Phase Coherence / 8:
The Aharonov-Bohm effect in mesoscopic conductors / 8.1:
Weak localization / 8.2:
Universal conductance fluctuations / 8.3:
Phase coherence in ballistic 2DEGs / 8.4:
Resonant tunnelling and S - matrices / 8.5:
Singe Electron Tunnelling / 9:
The principle of Coulomb blockade / 9.1:
Basic single electron tunnelling circuits / 9.2:
Coulomb blockade at the double barrier / 9.2.1:
Current-voltage characteristics: the Coulomb staircase / 9.2.2:
The SET transistor / 9.2.3:
SET circuits with many islands; the single electron pump / 9.3:
Quantum Dots / 10:
Phenomenology of quantum dots / 10.1:
The constant interaction model / 10.2:
Beyond the constant interaction model / 10.3:
Shape of conductance resonances and current-voltage characteristics / 10.4:
Other types of quantum dots / 10.5:
Mesoscopic Superlattices / 11:
One-dimensional superlattices / 11.1:
Two-dimensional superlattices / 11.2:
SI and cgs Units / A:
Appendices
Correlation and Convolution / B:
Fourier transofrmation / B.1:
Convolutions / B.2:
Correlation functions / B.3:
Capacitance Matrix and Electrostatic Energy / C:
The Transfer Hamiltonian / D:
Solutions to Selected Exercises / E:
References
Index
Introduction / 1:
Preliminary remarks / 1.1:
Mesoscopic transport / 1.2:
9.

図書

図書
S.N. Khanna, A.W. Castleman, Jr. [(eds.)]
出版情報: Berlin : Springer, c2003  xii, 265 p. ; 24 cm
シリーズ名: Springer series in cluster physics
Physics and astronomy online library
所蔵情報: loading…
10.

図書

図書
C. N. R. Rao, A. Müller, A. K. Cheetham (eds.)
出版情報: Weinheim : Wiley-VCH, c2004  2v. (xx, 741 p.) ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Contributors
Nanomaterials:
An Introduction. / Volume 1:
Strategies for the Scalable Synthesis of Quantum Dots and Related Nanodimensional Materials. / 1:
Moving Nanoparticles Around: Phase-Transfer Processes in Nanomaterials Synthesis. / C. N. R. Rao
Mesoscopic Assembly and Other Properties of Metal and Semiconductor Nanocrystals.
Oxide Nanoparticles.Sonochemistry and Other Novel Methods Developed for the Synthesis of Nanoparticles. / A. Muller
Solvothermal Synthesis of Non-Oxide Nanomaterials.
Nanotubes and Nanowires.Synthesis, Assembly and Reactivity of Metallic Nanorods. / A. K. Cheetham
Oxide-Assisted Growth of Silicon and Related Nanowires Growth Mechanism, Structure and Properties.
Electronic Structure and Spectroscopy of Semiconductor Nanocrystals.
Nanomaterials--An Introduction
Core-shell Semiconductor Nanocrystals for Biological Labeling.
Large Semiconductor Molecules. / 1.1:
Oxomolybdates:
Size Effects
From Structures to Functions in a New Era of Nanochemistry.
Nanostructural Polymers / 1.2:
Recent Developments in the Chemistry and Chemical Applications of Porous Silicon.
Synthesis and Assembly
Nanocatalysis.
Nanoporous Materials.Photochemistry and Electrochemistry of Nanoassemblies. / 1.3:
Electrochemistry with Nanoparticles
Techniques
Nanolithography and Nanomanipulation.
Applications and Technology Development / 1.4:
Nanoelectronics / 1.5:
Other Aspects / 1.6:
Concluding Remarks / 1.7:
Bibliography
Strategies for the Scalable Synthesis of Quantum Dots and Related Nanodimensional Materials / P. O'Brien ; N. Pickett2:
Introduction / 2.1:
Defining Nanodimensional Materials / 2.2:
Potential Uses for Nanodimensional Materials / 2.3:
The General Methods Available for the Synthesis of Nanodimensional Materials / 2.4:
Precipitative Methods / 2.4.1:
Reactive Methods in High Boiling Point Solvents / 2.4.2:
Hydrothermal and Solvothermal Methods / 2.4.3:
Gas-Phase Synthesis of Semiconductor Nanoparticles / 2.4.4:
Synthesis in a Structured Medium / 2.4.5:
The Suitability of Such Methods for Scaling / 2.5:
Conclusions and Perspectives on the Future / 2.6:
Acknowledgements
References
Moving Nanoparticles Around: Phase-Transfer Processes in Nanomaterials Synthesis / M. Sastry3:
Water-Based Gold Nanoparticle Synthesis / 3.1:
Advantages / 3.2.1:
Disadvantages / 3.2.2:
Organic Solution-Based Synthesis of Gold Nanoparticles / 3.3:
Moving Gold Nanoparticles Around / 3.3.1:
Phase Transfer of Aqueous Gold Nanoparticles to Non-Polar Organic Solvents / 3.4.1:
Transfer of Organically Soluble Gold Nanoparticles to Water / 3.4.2:
Acknowledgments
Mesoscopic Assembly and Other Properties of Metal and Semiconductor Nanocrystals / G. U. Kulkarni ; P. J. Thomas4:
Abstract
Synthetic Strategies / 4.1:
General Methods / 4.2.1:
Size Control / 4.2.2:
Shape Control / 4.2.3:
Tailoring the Ligand Shell / 4.2.4:
Programmed Assemblies / 4.3:
One-Dimensional Arrangements / 4.3.1:
Two-Dimensional Arrays / 4.3.2:
Three-Dimensional Superlattices / 4.3.3:
Superclusters / 4.3.4:
Colloidal Crystals / 4.3.5:
Nanocrystal Patterning / 4.3.6:
Emerging Applications / 4.4:
Isolated Nanocrystals / 4.4.1:
Collective Properties / 4.4.2:
Nanocomputing / 4.4.3:
Conclusions / 4.5:
Oxide Nanoparticles / R. Seshadri5:
Magnetite Particles in Nature / 5.1:
Routes for the Preparation of Isolated Oxide Nanoparticles / 5.3:
Hydrolysis / 5.3.1:
Oxidation / 5.3.2:
Thermolysis / 5.3.3:
Metathesis / 5.3.4:
Solvothermal Methods / 5.3.5:
Prospects / 5.4:
Sonochemistry and Other Novel Methods Developed for the Synthesis of Nanoparticles / Y. Mastai ; A. Gedanken6:
Sonochemistry / 6.1:
Sonochemical Fabrication of Nanometals / 6.1.1:
Sonochemical Fabrication of Nano-Metallic Oxides / 6.1.2:
Sonoelectrochemistry / 6.2:
Sonoelectrochemical Synthesis of Nanocrystalline Materials / 6.2.1:
Microwave Heating / 6.3:
Microwave Synthesis of Nanomaterials / 6.3.1:
Solvothermal Synthesis of Non-Oxide Nanomaterials / Y. T. Qian ; Y. L. Gu ; J. Lu7:
Solvothermal Synthesis of III-V Nanomaterials / 7.1:
Synthesis of Diamond, Carbon Nanotubes and Carbides / 7.3:
Synthesis of Si[subscript 3]N[subscript 4], P[subscript 3]N[subscript 5], Metal Nitrides and Phosphides / 7.4:
Synthesis of BN, B[subscript 4]C, BP and Borides / 7.5:
Synthesis of One-Dimensional Metal Chalcogenide Nanocrystallites / 7.6:
Room Temperature Synthesis of Nanomaterials / 7.7:
Nanotubes and Nanowires / A. Govindaraj8:
Carbon Nanotubes / 8.1:
Synthesis / 8.2.1:
Structure and Characterization / 8.2.2:
Mechanism of Formation / 8.2.3:
Chemically Modified Carbon Nanotubes / 8.2.4:
Electronic Structure, Properties and Devices / 8.2.5:
Inorganic Nanotubes / 8.3:
Preliminaries / 8.3.1:
General Synthetic Strategies / 8.3.2:
Structures / 8.3.3:
Useful Properties of Inorganic Nanotubes / 8.3.4:
Nanowires / 8.4:
Properties of Nanowires / 8.4.1:
Synthesis, Assembly and Reactivity of Metallic Nanorods / C. J. Murphy ; N. R. Jana ; L. A. Gearheart ; S. O. Obare ; K. K. Caswell ; S. Mann ; C. J. Johnson ; S. A. Davis ; E. Dujardin ; K. J. Edler9:
Seed-Mediated Growth Approach to the Synthesis of Inorganic Nanorods and Nanowires / 9.1:
Assembly of Metallic Nanorods: Self-Assembly vs. Designed Chemical Linkages / 9.3:
Reactivity of Metallic Nanoparticles Depends on Aspect Ratio / 9.4:
Conclusions and Future Prospects / 9.5:
Oxide-Assisted Growth of Silicon and Related Nanowires: Growth Mechanism, Structure and Properties / S. T. Lee ; R. Q. Zhang ; Y. Lifshitz10:
Oxide-Assisted Nanowire Growth / 10.1:
Discovery of Oxide-Assisted Growth / 10.2.1:
Oxide-Assisted Nucleation Mechanism / 10.2.2:
Oxide-Assisted Growth Mechanism / 10.2.3:
Comparison between Metal Catalyst VLS Growth and OAG / 10.2.4:
Control of SiNW Nanostructures in OAG / 10.3:
Morphology Control by Substrate Temperature / 10.3.1:
Diameter Control of Nanowires / 10.3.2:
Large-Area Aligned and Long SiNWs via Flow Control / 10.3.3:
Si Nanoribbons / 10.3.4:
Nanowires of Si Compounds by Multistep Oxide-Assisted Synthesis / 10.4:
Nanocables / 10.4.1:
Metal Silicide/SiNWs from Metal Vapor Vacuum Arc Implantation / 10.4.2:
Synthesis of Oriented SiC Nanowires / 10.4.3:
Implementation of OAG to Different Semiconducting Materials / 10.5:
Chemical Properties of SiNWs / 10.6:
Stability of H-Terminated SiNW Surfaces / 10.6.1:
Reduction of Metals in Liquid Solutions / 10.6.2:
Chemical Sensing of SiNWs / 10.6.3:
Use of SiNWs as Templates for Nanomaterial Growth / 10.6.4:
Optical and Electrical Properties of SiNWs / 10.7:
Raman and PL of SiNWs / 10.7.1:
Field Emission from Different Si-Based Nanostructures / 10.7.2:
STM and STS Measurements of SiNWs and B-Doped SiNWs / 10.7.3:
Periodic Array of SiNW Heterojunctions / 10.7.4:
Modeling / 10.8:
High Reactivity of Silicon Suboxide Vapor / 10.8.1:
Thermal and Chemical Stabilities of Pure Silicon Nanostructured Materials / 10.8.2:
Thermal and Chemical Stabilities of Hydrogenated Silicon Nanostructures / 10.8.3:
Summary / 10.9:
Acknowledgment
Electronic Structure and Spectroscopy of Semiconductor Nanocrystals / S. Sapra ; D. D. SarmaVolume 2:
Structural Transformations / 11.1:
Ultraviolet-Visible Absorption Spectroscopy / 11.3:
Fluorescence Spectroscopy / 11.4:
Electronic Structure Calculations / 11.5:
Effective Mass Approximation / 11.5.1:
Empirical Pseudopotential Method / 11.5.2:
Tight-Binding Method / 11.5.3:
Photoemission Studies / 11.6:
Core Level Photoemission / 11.6.1:
Valence Band Photoemission / 11.6.2:
Core-Shell Semiconductor Nanocrystals for Biological Labeling / R. E. Bailey ; S. Nie11.7:
Optical Properties / 12.1:
Surface Modification and Bioconjugation / 12.3:
Applications / 12.5:
Large Semiconductor Molecules / J. F. Corrigan ; M. W. DeGroot13:
Nickel Chalcogenides / 13.1:
Group XI Chalcogenides / 13.3:
Copper Sulfide and Copper Selenide Nanoclusters / 13.3.1:
Cu[subscript 2-x]Te and Ag[subscript 2]Te / 13.3.2:
Ag[subscript 2]S / 13.3.3:
Ag[subscript 2]Se / 13.3.4:
Group XII-chalogenides and the Quantum Confinement Effect / 13.4:
CdS / 13.4.1:
Ternary MM'E / 13.5:
Metal Pnictides from E(SiMe[subscript 3])[subscript 3] Reagents / 13.6:
Conclusions and Outlook / 13.7:
Oxomolybdates: From Structures to Functions in a New Era of Nanochemistry / S. Roy14:
Introduction: Similarities between Nanotechnology in Nature and Chemistry? / 14.1:
Sizes, Shapes, and Complexity of Nano-objects are Determined by the Nature and Variety of the Constituent Building Blocks / 14.2:
Nanoscaled Clusters with Unusual Form-Function Relationships / 14.3:
Perspectives for Materials Science and Nanotechnology: En Route to Spherical-Surface, Nanoporous-Cluster, and Super-Supramolecular Chemistry Including the Option of Modelling Cell Response / 14.4:
Nanostructured Polymers / S. Ramakrishnan15:
Macromolecular Structural Control / 15.1:
Living Polymerization / 15.2.1:
Polymer Conformational Control / 15.3:
Morphology of Block Copolymers / 15.4:
Nanostructures Based on Bulk Phase Separation / 15.5:
Nanostructures Based on Lyotropic Mesophases / 15.6:
Core-Crosslinked Systems / 15.6.1:
Shell-Crosslinked Systems / 15.6.2:
Nanocages / 15.6.3:
Rod-Coil Diblock Copolymers / 15.7:
Nanostructures from Polymerized Surfactant Assemblies / 15.8:
Summary and Outlook / 15.9:
Recent Developments in the Chemistry and Chemical Applications of Porous Silicon / J. M. Schmeltzer ; J. M. Buriak16:
Preparation and Characterization of Porous Silicon Substrates / 16.1:
Surface Chemistry of Porous Silicon Surfaces / 16.3:
Chemical Applications Based on Porous Silicon / 16.4:
Bioactive Porous Silicon / 16.4.1:
Micro Enzyme Reactors ([mu]IMERS) and Total Analysis Systems ([mu]TAS) / 16.4.2:
Porous Silicon Sensors / 16.4.3:
Explosive Porous Silicon / 16.4.4:
Desorption/Ionization on Silicon Mass Spectrometry (DIOS-MS) / 16.4.5:
Conclusion / 16.5:
Nanocatalysis / S. Abbet ; U. Heiz17:
Chemical Reactions on Point Defects of Oxide Surfaces / 17.1:
Chemical Reactions and Catalytic Processes on Free and Supported Clusters / 17.3:
Catalytic Processes on Free Metal Clusters / 17.3.1:
Chemical Reactions and Catalytic Cycles on Supported Clusters / 17.3.2:
Turn-Over Frequencies of Catalytic Reactions on Supported Clusters / 17.3.3:
Chemical Reactions Induced by Confined Electrons / 17.4:
Nanoporous Materials / P. M. Forster17.5:
Stability of Open-Framework Materials / 18.1:
Aluminosilicate Zeolites / 18.3:
Open-Framework Metal Phosphates / 18.4:
Aluminum Phosphates / 18.4.1:
Phosphates of Gallium and Indium / 18.4.2:
Tin(II) Phosphates and Antimony(III) Phosphates / 18.4.3:
Transition Metal Phosphates / 18.4.4:
Chalcogenides, Halides, Nitrides and Oxides / 18.5:
Sulfides and Selenides / 18.5.1:
Halides / 18.5.2:
Nitrides / 18.5.3:
Binary Metal Oxides / 18.5.4:
Sulfates / 18.5.5:
Hybrid Nanoporous Materials / 18.6:
Coordination Polymers / 18.6.1:
Hybrid Metal Oxides / 18.6.2:
Photochemistry and Electrochemistry of Nanoassemblies / P. V. Kamat18.7:
Metal and Semiconductor Nanostructures / 19.1:
Photoinduced Charge Transfer Processes in Semiconductor Nanoparticle Systems / 19.2:
Photoinduced Transformations of Metal Nanoparticles / 19.3:
Transient Bleaching of the Surface Plasmon Band / 19.3.1:
Laser Induced Fusion and Fragmentation of Metal Nanoclusters / 19.3.2:
Photoinduced Energy and Electron Transfer Process between Excited Sensitizer and Metal Nanocore / 19.3.3:
Electrochemistry of Semiconductor Nanostructures / 19.4:
Nanostructured Metal Oxide Films / 19.4.1:
Nanostructured Oxide Films Modified with Dyes and Redox Chromophores / 19.4.2:
Photocurrent Generation / 19.4.3:
Electrochemistry of Metal Nanostructures / 19.5:
Semiconductor-Metal Nanocomposites / 19.6:
Improving the Efficiency of Photocatalytic Transformations / 19.6.1:
Fermi Level Equilibration / 19.6.2:
Acknowledgement / 19.7:
Outline / S. Devarajan ; S. Sampath20:
Preparation of Nanostructures / 20.1:
Electrochemistry with Metallic Nanoparticles / 20.3:
Monolayer-Protected Nanoclusters / 20.3.1:
Nanoelectrode Ensembles / 20.3.2:
Single Electron Events / 20.4:
Probing Nanoparticles using Electrochemistry Coupled with Spectroscopy / 20.5:
Nanosensors / 20.6:
Biosensors / 20.6.1:
Chemical Sensors / 20.6.2:
Electrocatalysis / 20.7:
Summary and Perspectives / 20.8:
Nanolithography and Nanomanipulation / A. K. Raychaudhuri21:
Template Fabrication / 21.1:
Polycarbonate Etched Track Templates / 21.2.1:
Fabrication of Anodized Alumina Membrane / 21.2.2:
Anodized Alumina Membrane as a Mask for Physical Vapor Deposition / 21.2.3:
Templates Made in Block Copolymers / 21.2.4:
Fabrication of Nanostructures in the Templates / 21.3:
Electrodeposition / 21.3.1:
Sol-Gel Method / 21.3.2:
CVD Method / 21.3.3:
Scanning Probe Based Anodic Oxidation as a Tool for the Fabrication of Nanostructures / 21.4:
Oxidation of Metallic Substrates / 21.4.1:
Oxidation of Semiconducting Substrates / 21.4.2:
Use of Scanning Probe Microscopy in Dip Pen Nanolithography / 21.5:
Use of Scanning Probe Microscopy in Nanomanipulation / 21.6:
Nano-Electromechanical Systems / 21.7:
Index
Preface
List of Contributors
Nanomaterials:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼