close
1.

図書

図書
Jixiang Yan
出版情報: Berlin : De Gruyter, c2019  xiii, 392 p. ; 24 cm
シリーズ名: De Gruyter graduate
所蔵情報: loading…
目次情報: 続きを見る
Preface
The development of nature of light / 1:
Earlier theories / 1.1:
Classical concepts of particle and wave / 1.1.1:
Particle theory of light / 1.1.2:
Wave theory of light / 1.1.3:
Electromagnetic theory of light / 1.2:
Electromagnetic induction law / 1.2.1:
Maxwell's electromagnetic theory / 1.2.2:
Superposition and interference of light / 1.2.3:
The law of independent propagation of light waves / 1.3.1:
Light wave superposition principle / 1.3.2:
Interference conditions of light waves / 1.3.3:
Further discussion of coherence / 1.4:
Complex variable expression of polychromatic field / 1.4.1:
Degree of spatial and temporal coherence / 1.4.2:
Measurement of correlation of spatial and temporal / 1.4.3:
Early quantum theory of light and wave-particle duality / 1.5:
Concepts of radiation and energy quanta / 1.5.1:
Photoelectric effect and the concept of optical quanta / 1.5.2:
Compton scattering and further approval of particle property of light / 1.5.3:
Particle-wave duality of light / 1.5.4:
Brief introduction to modern quantum theory of light / 1.6:
Vector space and linear operator / 1.6.1:
One-dimensional harmonic oscillator / 1.6.2:
Quantization of electromagnetic field / 1.6.3:
Coherent photon states / 1.6.4:
Density operator and quantum distribution / 1.6.5:
Introduction to photon optics / 1.6.6:
Optical radiation and radiation source / 2:
Mechanism of atomic emission / 2.1:
Scattering of alpha particles and the nuclear structure of an atom / 2.1.1:
Atomic spectrum of hydrogen and Bohr's model / 2.1.2:
Quantum mechanics and atomic emission / 2.1.3:
Spectral line broadening / 2.1.4:
Spontaneous radiation and its sources / 2.2:
Laser mechanism / 2.3:
Concept of laser resonator and modes / 2.3.1:
Necessary conditions for producing a laser / 2.3.2:
Relationship between radiation coefficients / 2.3.3:
Necessary conditions for laser production / 2.3.4:
Sufficient condition for producing a laser / 2.3.5:
Physical properties of the lasers / 2.4:
Monochromatic and temporal coherence / 2.4.1:
Directivity and spatial coherence / 2.4.2:
Higher-order coherence / 2.4.3:
High brightness / 2.4.4:
Introduction to the operating characteristics of laser / 2.5:
Ultrashort pulse characteristics / 2.5.1:
Frequency stability characteristics / 2.5.2:
Band structure and electronic states of semiconductors / 2.6:
Introduction to the band concept / 2.6.1:
Electronic state in semiconductor / 2.6.2:
Excitation and recombination radiation / 2.7:
Direct transition and the semiconductor light-emitting material / 2.7.1:
Density of states and electronic excitation / 2.7.2:
p-n Junction in extrinsic semiconductor materials / 2.7.3:
Working mechanism of LEDs / 2.8:
Semiconductor diode laser / 2.9:
Semiconductor optical gain / 2.9.1:
Loss and oscillation threshold condition / 2.9.2:
Hetero-junction semiconductor lasers / 2.10:
Hetero-junction semiconductor / 2.10.1:
Laser structure / 2.10.2:
Bulk solid-state lasers / 3:
Overview / 3.1:
LD-pumped solid-state lasers / 3.2:
Comparison with the flash lamp pump / 3.2.1:
Threshold power and above threshold operation / 3.2.2:
Structure of LD-pumped solid-state laser / 3.2.3:
Thin-disc laser / 3.3:
Thin media and pumping / 3.3.1:
Principle of thin-disc laser / 3.3.2:
"Liquid" lasers / 3.3.3:
Slab lasers / 3.4:
Introduction / 3.4.1:
Solid heat capacity / 3.5:
The classic theory of solid heat capacity / 3.5.1:
Quantum theory of solid heat capacity / 3.5.2:
Heat-capacity operation model of lasers / 3.6:
Heat storage and increase in temperature / 3.6.1:
Temperature distribution and thermal stress / 3.6.2:
Beam distortion / 3.6.3:
Heat capacity laser example / 3.6.4:
Optical fiber lasers / 4:
Energy levels and spectra of several rare earth ions / 4.1:
Laser energy levels and spectra of several rare earth ions in silicon optical fiber / 4.2.1:
Laser energy levels and spectra of several rare earth ions in fluoride optical fiber / 4.2.3:
Mode and conditions for single-mode operation / 4.3:
Bulk media / 4.3.1:
Optical fiber working material / 4.3.2:
Mode property and cutoff frequency / 4.3.3:
The basic structure of optical fiber lasers / 4.3.4:
Double-clad fiber laser / 4.4:
Limitation of the single-clad fiber / 4.4.1:
Introduction of the photonic crystal fiber laser / 4.4.2:
Stimulated scattering fiber lasers / 4.5:
Raman scattering fiber lasers / 4.5.1:
Stimulated Brillouin scattering fiber lasers / 4.5.2:
Beam propagation and propagation media / 5:
Beam propagation in homogeneous media and media boundary / 5.1:
Beam propagation in homogeneous media / 5.1.1:
Beam transmission in the media boundary / 5.1.2:
Beam propagation through a thin lens / 5.1.3:
Gaussian beam propagation / 5.2:
Gaussian beam and its parameters / 5.2.1:
Gaussian beam propagation in free space / 5.2.2:
Gaussian beam propagation through a thin lens / 5.2.3:
Ray optics theory of planar dielectric optical waveguides / 5.3:
Beam reflection and refraction in media boundary / 5.3.1:
The beam propagation in planar waveguide / 5.3.2:
Guided wave in planar dielectric waveguide / 5.3.3:
Goos-Hanchen displacement and effective depth of waveguides / 5.3.4:
The electromagnetic theories foundation of planar waveguide / 5.4:
The general form of Maxwell's equation / 5.4.1:
Maxwell's equations for planar waveguide / 5.4.2:
Solutions of TE wave equations / 5.4.3:
The modes of TE wave and cutoff condition / 5.4.4:
Properties of waveguide mode / 5.4.5:
Channel waveguide introduction / 5.5:
Channel waveguide types / 5.5.1:
Vector wave equation / 5.5.2:
Approximate scalar equation and the method of separation of variables / 5.5.3:
Other solutions of scalar equations / 5.5.4:
Mode coupling theory in guided wave structures / 5.6:
Basic concepts of the directional coupling / 5.6.1:
Coupled mode equations / 5.6.2:
Scalar-coupled wave equations / 5.6.3:
Solutions of the scalar equations / 5.6.4:
Periodic waveguide / 5.6.5:
Waveguide mode transmission / 5.6.6:
Semiconductor waveguide theory / 5.7:
Methods for altering the refractive index of semiconductor / 5.7.1:
Semiconductor planar waveguide / 5.7.2:
Channel waveguide / 5.7.3:
Coupling effect / 5.7.4:
Losses in semiconductor waveguides / 5.7.5:
The new progress of waveguide theory / 5.8:
Second harmonic generation in a nonlinear waveguide / 5.8.1:
Non-orthogonal coupled mode theory of waveguide / 5.8.2:
Waveguide devices in insulating crystals / 5.9:
Directional couplers / 5.9.1:
Balanced bridge interferometers and cross-coupled waveguides / 5.9.2:
Interference filters / 5.9.3:
Coupled-mode fitters / 5.9.4:
The polarization selection devices / 5.9.5:
Transmission gratings / 5.9.6:
Reflection gratings / 5.9.7:
Electro- and acousto-optic gratings / 5.9.8:
Grating couplers / 5.9.9:
Semiconductor waveguide device / 5.10:
Semiconductor passive waveguide / 5.10.1:
Electro-optic waveguide modulator / 5.10.2:
Optoelectronic integrated circuit / 5.10.3:
Application examples of optical waveguide / 5.11:
The planar integrated optic RF spectrum analyzer / 5.11.1:
The waveguide chip connector / 5.11.2:
The channel waveguide A/D converter / 5.11.3:
Guided-wave optical communication / 5.11.4:
Introduction of MOEMS / 5.12:
The diffractive microlens / 5.12.1:
The refractive microlens / 5.12.3:
MOEM system / 5.12.4:
Light detection and detector / 6:
Overview of photoelectric detector performance / 6.1:
Responsivity / 6.1.1:
Noise equivalent power / 6.1.2:
Detectivity / 6.1.3:
Quantum efficiency / 6.1.4:
Response time / 6.1.5:
Linear region / 6.1.6:
Noise / 6.1.7:
The working foundation of photodetectors / 6.2:
External photoelectric effect / 6.2.1:
Photoconductivity effect / 6.2.2:
Photovoltaic effect / 6.2.3:
Light thermal electric effect / 6.2.4:
Photoelectric emission photodetector (based on external photoelectric effect) / 6.3:
Working process and structure of the photomultiplier tube / 6.3.1:
Main performance of the photomultiplier tube / 6.3.2:
Photoconductive detector / 6.4:
Performance of the Hg1-xCdxTe photoconductive detector / 6.4.1:
Photovoltaic detector / 6.5:
Brief introduction of the current characteristic of the PN junction photodiode / 6.5.1:
Response rate and detection rate / 6.5.3:
Photoelectric imaging and imaging system / 6.5.4:
Image detector profiles / 7.1:
Vacuum imaging device / 7.2.1:
CCD imaging device / 7.2.2:
CID imaging device / 7.2.3:
Point-spread function and performance index based on the point-spread function / 7.3:
Point-spread function / 7.3.1:
Strehl ratio / 7.3.2:
Relationship between circle surrounding energy and spatial frequency / 7.3.3:
OTF / 7.4:
Modulation transfer function / 7.5:
Modulation / 7.5.1:
MTF of the optical system / 7.5.2:
Diffraction-limited MTF / 7.6.1:
Aberrations effect / 7.6.2:
Defocus / 7.6.3:
Introduction to optical imaging system / 7.7:
Staring array optical imaging system / 7.7.1:
Scanning optical imaging system / 7.7.2:
Optical imaging system performance / 7.7.3:
Performance of staring array imaging system / 7.8:
Field of view / 7.8.1:
Noise and signal-to-noise ratio / 7.8.2:
Further description of the scanning imaging system performance / 7.9:
Scanning imaging system / 7.9.1:
System noise of scanning imaging / 7.9.2:
Fundamental of Nonlinear Optics / 8:
Nonlinear wave function / 8.1:
Slowly varying envelope approximation (SVEA) of equation / 8.1.2:
Nonlinearity of material and its coupling with light wave / 8.1.3:
Optical phase conjugate / 8.2:
Definition of phase conjugate wave / 8.2.1:
Comparison of PCM and CPM / 8.2.2:
Three-wave mixing / 8.3:
Phase matching three-wave mixing / 8.3.1:
Phase mismatching three-wave mixing / 8.3.2:
Degenerate four-wave mixing / 8.4:
Forward conjugate wave generated by FWM / 8.4.1:
Backward conjugate wave generated by FWM / 8.4.2:
Experimental study of DFWM phase conjugate / 8.4.3:
Near-Degenerate four wave mixing / 8.5:
DFWM Resonance / 8.6:
Qualitative description / 8.6.1:
Quantitative discussion / 8.6.2:
Photon echo / 8.7:
Qualitative description of photon echo of two-energy level system / 8.7.1:
Qualitative results of photon echo phase conjugate / 8.7.2:
Stimulated scattering / 8.8:
Stimulated Raman scattering / 8.8.1:
Stimulating Britlouin scattering / 8.8.2:
Photorefractive effect and associated materials / 8.9:
Photorefractive effect / 8.9.1:
Some photorefractive materials / 8.9.2:
Self-pumped phase conjugate / 8.10:
Two reflectors / 8.10.1:
Single reflector / 8.10.2:
No external mirror / 8.10.3:
References
Subject Index
Preface
The development of nature of light / 1:
Earlier theories / 1.1:
2.

図書

図書
Benedykt W. Licznerski, Andrzej Dziedzic, Editors ; organized by Institute of Electronic Technology, Technical University of Wrocław, Wrocław Chapter of Polish Academy of Sciences ; Sponsored by State Committee for Scientific Research ... [et. al.] ; Published by SPIE--The International Society for Optical Engineering
出版情報: Bellingham, Wash. : SPIE, c1996  xxii, 422 p. ; 28 cm
シリーズ名: Proceedings / SPIE -- the International Society for Optical Engineering ; v. 2780
所蔵情報: loading…
3.

図書

図書
by Ying Fu, Magnus Willander
出版情報: Boston : Kluwer Academic Publishers, 1999  263 p. ; 25 cm
シリーズ名: Electronic materials series ; 5
所蔵情報: loading…
目次情報: 続きを見る
Elements and compound semiconductors / 1:
Electronic processes in semiconductors / 2:
Optical properties of semiconductors / 3:
Electronic quantum devices / 4:
Quantum optoelectronics / 5:
Numerical recipes / 6:
Elements and compound semiconductors / 1:
Electronic processes in semiconductors / 2:
Optical properties of semiconductors / 3:
4.

図書

図書
edited by J.A. Chilton and M.T. Goosey
出版情報: London : Chapman & Hall, 1995  xxiv, 351 p ; 24 cm
所蔵情報: loading…
5.

図書

図書
edited by Francois R. Flory
出版情報: New York : M. Dekker, c1995  xii, 585 p. ; 24 cm
シリーズ名: Optical engineering ; v. 49
所蔵情報: loading…
目次情報: 続きを見る
Coating design: thin-film optical coating design / Part 1:
Deposition techniques and related topics / Part 2:
Starting materials
Optical monitoring
Reactive physical vapor deposition processes
Ion assisted deposition
Ion beam sputtering
Plasma impulse chemical vapor deposition
Molecular beam deposition
Uniformity
Characterization techniques / Part 3:
Spectrophotometric methods for refractive index determination
Ellipsometric measurements
Characterization of absorption by optics
Coating design: thin-film optical coating design / Part 1:
Deposition techniques and related topics / Part 2:
Starting materials
6.

図書

図書
Gordon Little, editor
出版情報: Bellingham, Wash. : SPIE Optical Engineering Press, c1994  xviii, 673 p. ; 29 cm
シリーズ名: SPIE milestone series / Brian J. Thompson, general editor ; v. MS 90
所蔵情報: loading…
7.

図書

図書
Girish S. Agarwal, editor
出版情報: Bellingham, Wash. : SPIE Optical Engineering Press, c1995  xix, 581 p. ; 29 cm
シリーズ名: SPIE milestone series / Brian J. Thompson, general editor ; v. MS 103
所蔵情報: loading…
8.

図書

図書
Hermann A. Haus
出版情報: Englewood Cliffs, NJ : Prentice-Hall, c1984  xii, 402 p. ; 24 cm
シリーズ名: Prentice-Hall series in solid state physical electronics
所蔵情報: loading…
9.

図書

図書
edited by Alan Chappell ; original German version, Volkmar Härtel, assisted by Eilhard Haseloff, Gerhard Jahn, and Günther Suhrke, Texas Instruments Deutschland GmbH
出版情報: New York : McGraw-Hill, c1978  xvii, 442 p. ; 26 cm
シリーズ名: Texas Instruments electronics series
所蔵情報: loading…
10.

図書

図書
Peter K. Cheo
出版情報: Englewood Cliffs, NJ : Prentice-Hall, c1985  xiii, 304 p. ; 24 cm
シリーズ名: Prentice-Hall series in solid state physical electronics
所蔵情報: loading…
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼