close
1.

図書

図書
Richard A. Shapery and C.T. Sun, editors
出版情報: West Conshohocken, PA : ASTM, c2000  vii, 377 p. ; 24 cm
シリーズ名: ASTM special technical publication ; 1357
所蔵情報: loading…
目次情報: 続きを見る
Overview
Polymers
Mechanical Properties of Degraded PMR-15 Resin / L. C. Tsuji ; H. L. McManus ; K. J. Bowles
Time Dependent Volume and Enthalpy Responses in Polymers / G. B. McKenna ; S. L. Simon
Creep Behavior in Amorphous and Semicrystalline PEN / M. L. Cerrada
A Constitutive Model for Long-Term Behavior of Polymers / I. D. Skrypnyk ; J. L. Spoormaker ; P. Kandachar
Implementation of Constitutive Model in FEA for Nonlinear Behavior of Plastics / W. Smit
The Effect of Nonlinear Viscoelasticity on Interfacial Shear Strength Measurements / G. A. Holmes ; R. C. Peterson ; D. L. Hunston ; W. G. McDonough ; C. L. Schutte
An Overstress Model for Solid Polymer Deformation Behavior Applied to Nylon 66 / E. Krempl ; Kwangsoo Ho
Composites
Aging During Elevated Temperature Stress Relaxation of IM7/K3B Composite / T. S. Gates ; L. C. Brinson ; K. S. Whitley ; T. Bai
Tensile and Compressive Creep of a Thermoplastic Polymer and the Effects of Physical Aging on the Composite Time-Dependent Behavior / D. R. Veazie
Nonlinear Multiaxial Behavior and Failure of Fiber-Reinforced Composites / S.-C. Hung ; K. M. Liechti
Nonlinear and Dynamic Compressive Behavior of Composites with Fiber Waviness / H. M. Hsiao ; I. M. Daniel
Nonlinear Viscoelastic Behavior of Rubber-Toughened Carbon and Glass/Epoxy Composites / R. T. Bocchieri ; R. A. Schapery
A Viscoplasticity Model for Characterizing Loading and Unloading Behavior of Polymeric Composites / C. M. Zhu ; C. T. Sun
Durability and Damage Tolerance of a Polyimide Chopped Fiber Composite Subjected to Thermomechanical Fatigue Missions and Creep Loadings / M. G. Castelli ; J. K. Sutter ; D. Benson
Life Prediction of PPS Composites Subjected to Cyclic Loading at Elevated Temperatures / J. S. Loverich ; B. E. Russell ; S. W. Case ; K. L. Reifsnider
Accelerated Strength Testing of Thermoplastic Composites / J. R. Reeder ; D. H. Allen ; W. L. Bradley
Hygrothermal Modeling of Polymers and Polymer Matrix Composites / Samit Roy
Hygrothermal Effects on Failure Mechanisms of Composite/Steel Bonded Joints / A. Roy ; E. Gontcharova-Benard ; J.-L. Gacougnolle ; P. Davies
Indexes
Overview
Polymers
Mechanical Properties of Degraded PMR-15 Resin / L. C. Tsuji ; H. L. McManus ; K. J. Bowles
2.

図書

図書
Alan S. Wineman, K.R. Rajagopal
出版情報: New York : Cambridge University Press, 2000  x, 317 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Discussion of Response of a Viscoelastic Material / 1:
Comparison with the Response of Classical Elastic and Classical Viscous Materials / 1.1:
Response of a Classical Elastic Solid / 1.2:
Response of a Classical Viscous Fluid / 1.3:
Comments on Material Microstructure / 1.4:
Response of a Viscoelastic Material / 1.5:
Typical Experimental Results / 1.6:
Material Properties / 1.7:
Linearity of Response / 1.8:
Aging Materials / 1.9:
Problems
Constitutive Equations for One-Dimensional Response of Viscoelastic Materials: Mechanical Analogs / 2:
Maxwell Model / 2.1:
Kelvin-Voigt Model / 2.2:
Three-Parameter Solid or Standard Linear Solid / 2.3:
N Maxwell Elements in Parallel / 2.4:
N Kelvin-Voigt Elements in Series / 2.5:
Relaxation and Creep Spectra / 2.6:
Constitutive Equations for One-Dimensional Linear Response of a Viscoelastic Material / 3:
General Restrictions on the Constitutive Equation / 3.1:
Linearity of Response: Superposition of Step Increments / 3.2:
Linearity of Response: Superposition of Pulses / 3.3:
Creep Forms of the Constitutive Equation / 3.4:
Summary of Forms of the Constitutive Equation / 3.5:
Some Features of the Linear Response of Viscoelastic Materials / 4:
Relation Between Relaxation and Creep Functions / 4.1:
Characteristic Creep and Relaxation Times / 4.2:
Characteristic Relaxation, Creep, and Process Times / 4.3:
Some Examples Illustrating Implications of Fading Memory / 4.4:
Histories with Constant Strain or Stress Rates / 5:
Constant Strain Rate Deformation / 5.1:
Constant Strain Rate Deformation and Recovery / 5.2:
Influence of Rise Time T* or Strain Rate [alpha] / 5.3:
Work Done in a Constant Strain Rate Deformation and Recovery Test / 5.4:
Repeated Cycles / 5.5:
Step Strain and Recovery / 5.6:
Ramp Strain Approximation to a Step Strain History / 5.7:
Constant Stress Rate Loading and Unloading History / 5.8:
Sinusoidal Oscillations / 6:
Sinusoidal Strain Histories / 6.1:
Sinusoidal Stress Histories / 6.2:
Relation Between G* ([omega]) and J* ([omega]) / 6.3:
Work per Cycle During Sinusoidal Oscillations / 6.4:
Complex Viscosity / 6.5:
Examples of Calculation of G* ([omega]) and J* ([omega]) / 6.6:
Low and High Frequency Limits of G* ([omega]) and J* ([omega]) / 6.7:
Fourier Integral Theorem, Fourier Transform / 6.8:
Expressions for G(t) and J(t) in Terms of G* ([omega]) and J* ([omega]) / 6.9:
Work Done During a General Deformation History / 6.10:
Constitutive Equation for Three-Dimensional Response of Linear Isotropic Viscoelastic Materials / 7:
Introduction / 7.1:
Linearity / 7.2:
Uniaxial Extension, Poisson's Ratio, Isotropy / 7.3:
Uniaxial Extension Along the x[subscript 2] and x[subscript 3] Directions / 7.4:
Shear Response / 7.5:
Constitutive Equation for Three-Dimensional Response / 7.6:
A Relation Between Poisson's Ratio and the Extensional and Shear Material Properties / 7.7:
Volumetric and Pure Shear Response / 7.8:
Stress in Terms of Strain History / 7.9:
Laplace Transformation of the Constitutive Equations / 7.10:
Effect of Viscoelasticity on Principal Directions of Stress and Strain / 7.12:
Summary of Constitutive Relations / 7.13:
Relations for Special Cases of Volumetric Response / 7.14:
Axial Load, Bending, and Torsion / 8:
Structural Components Under Axial Load / 8.1:
Pure Bending of Viscoelastic Beams / 8.3:
Kinematics of Deformation / 8.4:
Constitutive Equation / 8.5:
Force Analysis / 8.6:
Stress, Bending Moment, and Curvature Relations / 8.7:
Deformation of Beams Subjected to Transverse Loads / 8.8:
Beams on Hard Supports, Correspondence Principle / 8.9:
Delayed Contact, Direct Method of Solution / 8.10:
Interaction of Polymeric Structural Components, a Viscoelastic Beam on a Viscoelastic Support / 8.11:
Extrusion of a Bar, Tracking the History of a Material Element / 8.12:
Traveling Concentrated Load on a Beam / 8.13:
Torsion of Circular Bars / 8.14:
Analysis of Viscoelastic Structures / 8.15:
Dynamics of Bodies with Viscoelastic Support / 9:
Comparison of Spring-Damper and Viscoelastic Supports / 9.1:
Forced Oscillations / 9.3:
Free Oscillations / 9.4:
Problem
Boundary Value Problems for Linear Isotropic Viscoelastic Materials / 10:
Governing Equations / 10.1:
Correspondence Theorem for Quasi-Static Motion / 10.3:
Breakdown of the Correspondence Principle / 10.4:
Application of the Correspondence Principle: Pressure Loading of a Viscoelastic Cylinder / 10.5:
Application of the Correspondence Principle: Torsion of Bars of Non-Circular Cross-Section / 10.6:
Direct Solution Methods / 10.7:
Influence of Temperature / 11:
Thermally Induced Dimensional Changes / 11.1:
Mechanical Response at Different Temperatures / 11.3:
Time-Temperature Superposition / 11.4:
Experimental Support for Time-Temperature Superposition / 11.5:
General Comments / 11.6:
Effect of Temperature on Characteristic Stress Relaxation Time / 11.7:
Other Material Property Functions / 11.8:
Implications of Time-Temperature Superposition for Processes / 11.9:
Rate of Work / 11.10:
An Experimental Study / 11.11:
Extension to Time-Varying Temperature Histories / 11.12:
Constitutive Equation for Time-Varying Temperature Histories / 11.13:
Thermo-Viscoelastic Response of a Three Bar Structure: Formulation / 11.14:
Thermo-Viscoelastic Response of a Three Bar Structure: Development of Frozen-in Deformation / 11.15:
Thermo-Viscoelastic Response of a Three Bar Structure: Frozen-in Forces / 11.16:
Thermo-Viscoelastic Response of a Three Bar Structure: Cooling Induced Warping / 11.17:
Thermo-Viscoelastic Response of a Three Bar Structure: Comments / 11.18:
Operator Notation for Time Derivatives / Appendix A:
Laplace Transform / Appendix B:
Volterra Integral Equations / Appendix C:
Formal Manipulation Methods / Appendix D:
Field Equations in Cartesian and Cylindrical Coordinates / Appendix E:
References
Index
Preface
Discussion of Response of a Viscoelastic Material / 1:
Comparison with the Response of Classical Elastic and Classical Viscous Materials / 1.1:
3.

図書

図書
Alan I. Nakatani, editor, Mark D. Dadmun, editor
出版情報: Washington, DC : American Chemical Society, 1995  xii, 364 p. ; 24 cm
シリーズ名: ACS symposium series ; 597
所蔵情報: loading…
目次情報: 続きを見る
An Introduction to Flow-Induced Structures in Polymers / G. Fuller ; J. van Egmond ; D. Wirtz ; E. Peuvrel-Disdier ; E. Wheeler ; H.Takahashi
Enhancement of Concentration Fluctuations in Solutions Subject to External Fields / T. Kume ; T. Hashimoto
String Phase in Semidilute Polystyrene Solutions Under Steady Shear Flow / F. Boue ; P. Lindner
Small Angle Neutron Scattering from Sheared Semidilute
Solutions: Butterfly Effect / A. Emanuele ; M.B. Palma-Vittorelli
Structural Evolution / Viscous Dissipation During Spinodal Demixing of a Biopolymeric Solution ; A.J. McHugh ; A. Immaneni ; B.J. Edwards
Flow-Induced Structuring and Conformational Rearrangements in Flexible and Semiflexible Polymer Solutions / M. Zisenis ; B. Prtzl ; J. Springer
Changes of Macromolecular Chain Conformations Induced by Shear Flow / M.L. Fernandez ; J.S. Higgins
Effect of Flow on Polymer-Polymer Miscibility / T. Izumitani
Effect of Shear Deformation on Spinodal Decomposition / Y. Takahashi ; I. Noda
Domain Structures and Viscoelastic Properties of Immiscible Polymer Blends Under Shear Flow / Z.J. Chen ; N.G. Remediakis ; M.T. Shaw ; R. A. Weiss
Effects of Flow on the Structure and Phase Behavior of Polymer Blends / K. Sondergaard ; J. Lyngaae-Jorgensen
Influence of Interface Modification on Coalescence in Polymer Blends / A. Dardin ; C. Boeffel ; H.-W. Spiess ; R. Stadler ; E.T. Samulski
OrientationBehavior of Thermoplastic Elastomers Studied by 2H-NMR Spectroscopy / P.-Y. Lai
Monte Carlo Simulations of End-Grafted Polymer Chains Under Shear Flow / M. Muthukumar
Effect of Shear on Self-Assembling Block Copolymers and Phase-Separating Polymer Blends / C.L. Jackson ; F.A. Morrison ; A.I. Nakatani ; J.W. Mays ; K.A.Barnes ; C.C. Han
Shear-Induced Changes in the Order-Disorder Transition Temperature and the Morphology of a Triblock Copolymer / D.S. Johnsonbaugh
Phase-Separation Kinetics of a Polymer Blend Solution Studied by a Two-Step Shear Quench / L.E. Dewalt ; K.L. Farkas ; C.L. Abel ; M.W. Kim ; D.G. Peiffer ; H.D. Ou-Yang
Shear-Induced Structure and Dynamics of Tube-Shaped Micelles / B. Diao ; S. Vijaykumar ; G.C. Berry
The Texture in Shear Flow of Nematic Solutions of a Rodlike Polymer / S.A. Patlazhan ; J.B. Riti ; P. Navard
Light Scattering from Lyotropic Textured Liquid-Crystalline Polymers Under Shear Flow / W. Burghardt ; B. Bedford ; K. Hongladarom ; M. Mahoney
Comparison of Molecular Orientation and Rheology in Model Lyotropic Liquid-CrystallinePolymers / M.D. Dadmun
Shear-Induced Orientation of Liquid-Crystalline Hydroxypropyl cellulose in D2O as Measured by Neutron Scattering / W.J. Orts ; L. Godbout ; R.H. Marchessault ; J.F. Revol
Shear-Induced Alignment of Liquid-Crystalline Suspensions of Cellulose Microfibrils"
An Introduction to Flow-Induced Structures in Polymers / G. Fuller ; J. van Egmond ; D. Wirtz ; E. Peuvrel-Disdier ; E. Wheeler ; H.Takahashi
Enhancement of Concentration Fluctuations in Solutions Subject to External Fields / T. Kume ; T. Hashimoto
String Phase in Semidilute Polystyrene Solutions Under Steady Shear Flow / F. Boue ; P. Lindner
4.

図書

図書
I.M. Ward
出版情報: London ; New York : Wiley-Interscience, c1971  xv, 375 p. ; 24 cm
所蔵情報: loading…
5.

図書

図書
edited by Shiro Matsuoka
出版情報: Munich ; New York : Hanser Publishers , New York : Distributed in the United States of America and Canada by Oxford University Press, 1992  322 p. ; 24 cm
シリーズ名: SPE books
所蔵情報: loading…
目次情報: 続きを見る
Stress and Strain / 1:
Free Energy and Stress / 1.1:
Interrelationship Among the Stresses in Elastic Body / 1.2:
Viscoelasticity / 1.3:
Stress Relaxation / 1.3.1:
Superposition of the Stress-Strain History / 1.3.2:
The Relaxation Spectrum / 1.4:
Phenomenological Aspects / 1.4.1:
The Three Stages of Relaxation / 1.4.2:
Molecular Interpretation / 1.4.3:
Conformational Relaxation without Cooperativity / 1.4.3.1:
Cooperativity in Stage 1 Relaxation / 1.4.3.2:
External Viscosity: Stage 2 and 3
Approximate Relations among Linear Viscoelastic Functions / 1.5:
The Yield Phenomenon / 1.6:
Intermolecular Cooperativity / 2:
A Molecular Model for Intermolecular Cooperativity / 2.1:
Distribution of Relaxation Times near the Glass Transition / 2.2:
Stage 1: Relaxation of Conformers / 2.2.1:
Stage 2: The "Transition" Stage / 2.2.2:
The Glassy State / 3:
Isothermal Contraction/Expansion in the Nonequilibrium State / 3.1:
Linear Viscoelastic Relaxation in the Glassy State / 3.2:
Plasticity and Nonlinear Viscoelasticity in the Glassy State / 3.3:
The Magnitude of Relaxation Time in Glassy Polymers / 3.3.1:
The Free Volume Hypothesis / 3.3.2:
Plasticity and Yield Phenomena / 3.3.3:
Viscoplasticity and Nonlinear Viscoelasticity / 3.3.4:
Engineering Scaling Rules for Creep, Relaxation, and Stress-Strain / 3.3.5:
Invariants in Elasticity / 3.3.6:
The Hypothesis of Domain Breakup During Yield / 3.3.7:
The Molten State / 4:
Elements of Melt Rheology / 4.1:
Rubber Elasticity / 4.2:
Linear Viscoelasticity without Entanglement: Stage 2 / 4.3:
Linear Viscoelasticity with Entanglement: Stage 3 / 4.4:
The Melt Flow / 4.5:
Additional Comments / 4.6:
The Vertical Shift Factor and the BKZ Theory / 4.6.1:
The Stress Overshoot / 4.6.2:
Normal Stresses / 4.6.3:
The Crystalline State / 5:
Melting and Crystallization / 5.1:
Relaxation of Semicrystalline Polymers as Composite Structures / 5.2:
Engineering Properties / 5.3:
Related Topics / 6:
The Glass Transition in Crosslinked Polymers (Thermosets) / 6.1:
Failure in Plastics / 6.2:
Polymers Above Tg / 6.2.1:
Polymer Solids / 6.2.2:
Crazing and Stress Cracking / 6.2.3:
Impact Strength and the Brittle-Ductile Transition Temperature / 6.2.4:
Polymer Solutions / 6.3:
Computer Programs in Basic / 7:
Engineering Properties of Glassy and Crystalline Polymers / 7.1:
Nomenclature for Polymer1.Bas / 7.1.1:
Nomenclature in the Program / 7.1.2:
Optional Subroutines / 7.1.3:
Function Keys / 7.1.4:
The Program / 7.2:
Thermodynamic Recovery / 7.3:
Stress and Strain / 1:
Free Energy and Stress / 1.1:
Interrelationship Among the Stresses in Elastic Body / 1.2:
6.

図書

図書
by D.W. van Krevelen
出版情報: Amsterdam ; Tokyo : Elsevier, 1990  xxii, 875 p. ; 25 cm
所蔵情報: loading…
7.

図書

図書
edited by Anagnostis E. Zachariades, Roger S. Porter
出版情報: New York : M. Dekker, c1983  x, 382 p. ; 24 cm
シリーズ名: Plastics engineering ; 4
所蔵情報: loading…
目次情報: 続きを見る
Solid-state extrusion of thermoplastics / Anagnostis E. Zachariades and Roger S. Porter
Polyethylene and poly(ethylene terephthalate) fibers prepared by flow crystallization in convergent die geometry / John A. Cuculo and John L. Crouse
Mechanical and transport properties of drawn semicrystalline polymers / Anton Peterlin
Ultradrawing of semicrystalline polymers / Shoji Ichihara and Shozo Iida
Rheo-optical studies on alpha and beta mechanical dispersions of high-density polyethelene / Hiromichi Kawai, et al
The strophon theory of deformation of glassy amorphous polymers / I.V. Yannas and Robert R. Luise
Structure and properties of aromatic polyesters of P-hydroxybenzoic acid / James Economy and Willi Volksen
Aramid fobers / John R. Schaefgen
Structure-property relations in poly(P-phenylene:benzobisthiazole) fibers / Steven R. Allen, et al
Solid-state extrusion of thermoplastics / Anagnostis E. Zachariades and Roger S. Porter
Polyethylene and poly(ethylene terephthalate) fibers prepared by flow crystallization in convergent die geometry / John A. Cuculo and John L. Crouse
Mechanical and transport properties of drawn semicrystalline polymers / Anton Peterlin
8.

図書

図書
J. Rösler, H. Harders, M. Bäker
出版情報: Berlin : Springer, c2007  xv, 534 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
The structure of materials / 1:
Atomic structure and the chemical bond / 1.1:
Metals / 1.2:
Metallic bond / 1.2.1:
Crystal structures / 1.2.2:
Polycrystalline metals / 1.2.3:
Ceramics / 1.3:
Covalents bond / 1.3.1:
Ionic bond / 1.3.2:
Dipole bond / 1.3.3:
Van der Waals bond / 1.3.4:
Hydrogen bond / 1.3.5:
The crystal structure of ceramics / 1.3.6:
Amorphous ceramics / 1.3.7:
Polymers / 1.4:
The chemical structure of polymers / 1.4.1:
The structure of polymers / 1.4.2:
Elasticity / 2:
Deformation modes / 2.1:
Stress and strain / 2.2:
Stress / 2.2.1:
Strain / 2.2.2:
Atomic interactions / 2.3:
Hooke's law / 2.4:
Elastic strain energy / 2.4.1:
Elastic deformation under multiaxial loads / 2.4.2:
Isotropic material / 2.4.3:
Cubic lattice / 2.4.4:
Orthorhombic crystals and orthotropic elasticity / 2.4.5:
Transversally isotropic elasticity / 2.4.6:
Other crystal lattices / 2.4.7:
Examples / 2.4.8:
Isotropy and anisotropy of macroscopic components / 2.5:
Temperature dependence of Young's modulus / 2.6:
Plasticity and failure / 3:
Nominal and true strain / 3.1:
Stress-strain diagrams / 3.2:
Types of stress-strain diagrams / 3.2.1:
Analysis of a stress-strain diagram / 3.2.2:
Approximation of the stress-strain curve / 3.2.3:
Plasticity theory / 3.3:
Yield criteria / 3.3.1:
Yield criteria of metals / 3.3.2:
Yield criteria of polymers / 3.3.3:
Flow rules / 3.3.4:
Hardening / 3.3.5:
Application of a yield criterion, flow rule, and hardening rule / 3.3.6:
Hardness / 3.4:
Scratch tests / 3.4.1:
Indentation tests / 3.4.2:
Rebound tests / 3.4.3:
Material failure / 3.5:
Shear fracture / 3.5.1:
Cleavage fracture / 3.5.2:
Fracture criteria / 3.5.3:
Notches / 4:
Stress concentration factor / 4.1:
Neuber's rule / 4.2:
Tensile testing of notched specimens / 4.3:
Fracture mechanics / 5:
Introduction to fracture mechanics / 5.1:
Definitions / 5.1.1:
Linear-elastic fracture mechanics / 5.2:
The stress field near a crack tip / 5.2.1:
The energy balance of crack propagation / 5.2.2:
Dimensioning pre-cracked components under static loads / 5.2.3:
Fracture parameters of different materials / 5.2.4:
Material behaviour during crack propagation / 5.2.5:
Subcritical crack propagation / 5.2.6:
Measuring fracture parameters / 5.2.7:
Elastic-plastic fracture mechanics / 5.3:
Crack tip opening displacement (CTOD) / 5.3.1:
J integral / 5.3.2:
Measuring elastic-plastic fracture mechanics parameters / 5.3.3:
Mechanical behaviour of metals / 6:
Theoretical strength / 6.1:
Dislocations / 6.2:
Types of dislocations / 6.2.1:
The stress field of a dislocation / 6.2.2:
Dislocation movement / 6.2.3:
Slip systems / 6.2.4:
The critical resolved shear stress / 6.2.5:
Taylor factor / 6.2.6:
Dislocation interaction / 6.2.7:
Generation, multiplication and annihilation of dislocations / 6.2.8:
Forces acting on dislocations / 6.2.9:
Overcoming obstacles / 6.3:
Athermal processes / 6.3.1:
Thermally activated processes / 6.3.2:
Ductile-brittle transition / 6.3.3:
Climb / 6.3.4:
Intersection of dislocations / 6.3.5:
Strengthening mechanisms / 6.4:
Work hardening / 6.4.1:
Grain boundary strengthening / 6.4.2:
Solid solution hardening / 6.4.3:
Particle strengthening / 6.4.4:
Hardening of steels / 6.4.5:
Mechanical twinning / 6.5:
Mechanical behaviour of ceramics / 7:
Manufacturing ceramics / 7.1:
Mechanisms of crack propagation / 7.2:
Crack deflection / 7.2.1:
Crack bridging / 7.2.2:
Microcrack formation and crack branching / 7.2.3:
Stress-induced phase transformations / 7.2.4:
Stable crack growth / 7.2.5:
Subcritical crack growth in ceramics / 7.2.6:
Statistical fracture mechanics / 7.3:
Weibull statistics / 7.3.1:
Weibull statistics for subcritical crack growth / 7.3.2:
Measuring the parameters [sigma subscript 0] and m / 7.3.3:
Proof test / 7.4:
Strengthening ceramics / 7.5:
Reducing defect size / 7.5.1:
Microcracks / 7.5.2:
Transformation toughening / 7.5.4:
Adding ductile particles / 7.5.5:
Mechanical behaviour of polymers / 8:
Physical properties of polymers / 8.1:
Relaxation processes / 8.1.1:
Glass transition temperature / 8.1.2:
Melting temperature / 8.1.3:
Time-dependent deformation of polymers / 8.2:
Phenomenological description of time-dependence / 8.2.1:
Time-dependence and thermal activation / 8.2.2:
Elastic properties of polymers / 8.3:
Elastic properties of thermoplastics / 8.3.1:
Elastic properties of elastomers and duromers / 8.3.2:
Plastic behaviour / 8.4:
Amorphous thermoplastics / 8.4.1:
Semi-crystalline thermoplastics / 8.4.2:
Increasing the thermal stability / 8.5:
Increasing the glass and the melting temperature / 8.5.1:
Increasing the crystallinity / 8.5.2:
Increasing strength and stiffness / 8.6:
Increasing the ductility / 8.7:
Environmental effects / 8.8:
Mechanical behaviour of fibre reinforced composites / 9:
Strengthening methods / 9.1:
Classifying by particle geometry / 9.1.1:
Classifying by matrix systems / 9.1.2:
Elasticity of fibre composites / 9.2:
Loading in parallel to the fibres / 9.2.1:
Loading perpendicular to the fibres / 9.2.2:
The anisotropy in general / 9.2.3:
Plasticity and fracture of composites / 9.3:
Tensile loading with continuous fibres / 9.3.1:
Load transfer between matrix and fibre / 9.3.2:
Crack propagation in fibre composites / 9.3.3:
Statistics of composite failure / 9.3.4:
Failure under compressive loads / 9.3.5:
Matrix-dominated failure and arbitrary loads / 9.3.6:
Examples of composites / 9.4:
Polymer matrix composites / 9.4.1:
Metal matrix composites / 9.4.2:
Ceramic matrix composites / 9.4.3:
Biological composites / 9.4.4:
Fatigue / 10:
Types of loads / 10.1:
Fatigue failure of metals / 10.2:
Crack initiation / 10.2.1:
Crack propagation (stage II) / 10.2.2:
Final fracture / 10.2.3:
Fatigue of ceramics / 10.3:
Fatigue of polymers / 10.4:
Thermal fatigue / 10.4.1:
Mechanical fatigue / 10.4.2:
Fatigue of fibre composites / 10.5:
Phenomenological description of the fatigue strength / 10.6:
Fatigue crack growth / 10.6.1:
Stress-cycle diagrams (S-N diagrams) / 10.6.2:
The role of mean stress / 10.6.3:
Fatigue assessment with variable amplitude loading / 10.6.4:
Cyclic stress-strain behaviour / 10.6.5:
Kitagawa diagram / 10.6.6:
Fatigue of notched specimens / 10.7:
Creep / 11:
Phenomenology of creep / 11.1:
Creep mechanisms / 11.2:
Stages of creep / 11.2.1:
Dislocation creep / 11.2.2:
Diffusion creep / 11.2.3:
Grain boundary sliding / 11.2.4:
Deformation mechanism maps / 11.2.5:
Creep fracture / 11.3:
Increasing the creep resistance / 11.4:
Exercises / 12:
Packing density of crystals
Macromolecules
Interaction between two atoms
Bulk modulus
Relation between the elastic constants
Candy catapult
True strain
Interest calculation
Large deformations
Design of a notched shaft
Estimating the fracture toughness K[subscript Ic] / 13:
Determination of the fracture toughness K[subscript Ic] / 14:
Static design of a tube / 15:
Estimating the dislocation density / 16:
Thermally activated dislocation generation / 18:
Precipitation hardening / 19:
Design of a fluid tank / 22:
Subcritical crack growth of a ceramic component / 24:
Mechanical models of viscoelastic polymers / 25:
Elastic damping / 26:
Eyring plot / 27:
Properties of a polymer matrix composite / 28:
Estimating the number of cycles to failure / 30:
Miner's rule / 31:
Larson-Miller parameter / 32:
Creep deformation / 33:
Relaxation of thermal stresses by creep / 34:
Solution
Using tensors / A:
Introduction / A.1:
The order of a tensor / A.2:
Tensor notations / A.3:
Tensor operations and Einstein summation convention / A.4:
Coordinate transformations / A.5:
Important constants and tensor operations / A.6:
Invariants / A.7:
Derivations of tensor fields / A.8:
Miller and Miller-Bravais indices / B:
Miller indices / B.1:
Miller-Bravais indices / B.2:
A crash course in thermodynamics / C:
Thermal activation / C.1:
Free energy and free enthalpy / C.2:
Phase transformations and phase diagrams / C.3:
The J integral / D:
Discontinuities, singularities, and Gauss' theorem / D.1:
Energy-momentum tensor / D.2:
J integral at a crack tip / D.3:
Plasticity at the crack tip / D.5:
Energy interpretation of the J integral / D.6:
References
List of symbols
Index
The structure of materials / 1:
Atomic structure and the chemical bond / 1.1:
Metals / 1.2:
9.

図書

図書
D.W. van Krevelen
出版情報: Amsterdam ; Tokyo : Elsevier, 2009  xxvi, 1004 p. ; 27 cm
所蔵情報: loading…
10.

図書

図書
by D. W. van Krevelen, with the collaboration of P. J. Hoftyzer
出版情報: Amsterdam ; New York : Elsevier Scientific Pub. Co., 1976  xxxiii, 620 p. ; 25 cm
所蔵情報: loading…
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼