close
1.

図書

図書
editors, J. Anthony C. Bland, Adrian Ionescu
出版情報: New York : American Institute of Physics, 2008  xix, 196 p. ; 25 cm
シリーズ名: AIP conference proceedings ; 1025
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction
Magnetic Entities and Materials for Biomedical Applications / Part 1:
Magnetic Biosensors-From Molecule to System / M. W. J. Prins
The In-flow Capture of Superparamagnetic Nanoparticles for Targeting of Gene Therapeutics / N. J. Darton ; B. Hallmark ; X. Han ; S. Palit ; M. R. Mackley ; D. Darling ; F. Farzaneh ; N. K. H. Slater
Progress in Using Magnetic Nanoobjects for Biomedical Diagnostics / N. Kataeva ; J. Schotter ; A. Shoshi ; R. Heer ; M. Eggeling ; O. Bethge ; C. Nohammer ; H. Bruckl
Templated Growth and Selective Functionalization of Magnetic Nanowires / F. van Belle ; J. J. Palfreyman ; W. S. Lew ; T. Mitrelias ; J. A. C. Bland
Controlled Manipulation of Nanoentities in Suspension / D. L. Fan ; R. C. Cammarata ; C. L. Chien
Digitally Encoded Exchange Biased Multilayers / M. Barbagallo ; A. Ionescu
Magnetic Microtags and Magnetic Encoding for Applications in Biotechnology / T. Trypiniotis ; K. P. Kopper ; S. J. Steinmuller ; P. A. Robertson
High Throughput Biological Analysis Using Multi-bit Magnetic Digital Planar Tags / B. Hong ; J.-R. Jeong ; J. Llandro ; T. J. Hayward
Magnetically Controlled Shape Memory Behaviour-Materials and Applications / A. P. Gandy ; A. Sheikh ; K. Neumann ; K.-U. Neumann ; D. Pooley ; K. R. A. Ziebeck
Magnetic Biosensors and Detection Systems / Part 2:
Giant Magnetoresistive Biochips for Biomarker Detection and Genotyping: An Overview / S. X. Wang
Towards Magnetic Suspension Assay Technology / C. H. W. Barnes
Detection of Magnetic-based Biomolecules Using MR Sensors / M. Volmer ; M. Avram
Giant Magnetoimpedance for Biosensing in Drug Delivery / V. Fal-Miyar ; A. Kumar ; S. Mohapatra ; S. Shirley ; N. A. Frey ; J. M. Barandiaran ; G. V. Kurlyandskaya
Residence Times Difference Fluxgate Magnetometer for Magnetic Biosensing / B. Ando ; A. Ascia ; S. Baglio ; A. R. Bulsara ; V. In ; N. Pitrone ; C. Trigona
Integrated Spintronic Platforms for Biomolecular Recognition Detection / V. C. Martins ; F. A. Cardoso ; J. Loureiro ; M. Mercier ; J. Germano ; S. Cardoso ; R. Ferreira ; L. P. Fonesca ; L. Sousa ; M. S. Piedade ; P. P. Freitas
Moment Selective Digital Detection of Single Magnetic Beads for Multiplexed Bioassays / D. Morecroft ; F. J. Castano ; I. A. Colin ; C. A. Ross
Advanced Magnetoresistance Sensing of Rotation Rate for Biomedical Applications / A. Avram
Author Index
Preface
Introduction
Magnetic Entities and Materials for Biomedical Applications / Part 1:
2.

図書

図書
edited by Christian Hess and Robert Schlögl
出版情報: Cambridge [UK] : Royal Society of Chemistry, c2011  xiv, 438 p. ; 24 cm
シリーズ名: RSC nanoscience & nanotechnology ; no. 19
所蔵情報: loading…
3.

図書

図書
edited by Knut Rurack and Ramón Martínez-Máñez
出版情報: Hoboken, N.J. : John Wiley & Sons, c2010  xxxiv, 766 p., [16] p. of plates ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Editors and Contributors
Abbreviations
Hybrid (Nano)Materials Meet Supramolecular Chemistry: A Brief Introduction to Basic Terms and Concepts / Knut Rurack ; Ramón Martínez-Máñez1:
Supramolecular Chemistry at the Mesoscale / Katsuhiko Ariga ; Gary J. Richards ; Jonathan P. Hill ; Ajayan Vinu ; Toshiyuki Mori2:
Organic-Inorganic Hybrid Nanomaterials / Part 1:
Silica-Based Mesoporous Organic-Inorganic Hybrid Material / Frank Hoffmann ; Michael Fröba3:
Modified Gold Nanoparticles and Surfaces / Paolo Pengo ; Lucia Pasquato4:
Organically Functionalized Semiconductor Nanocrystals: Synthesis, Properties and System Design for Optoelectronic Applications / Peter Reiss ; Julia de Girolamo ; Adam Pron5:
Functionalized Carbon Nanotubes for Bioapplications / Lingrong Gu ; Fushen Lu ; Pengju G. Luo ; Haifang Wang ; Mohammed J. Meziani ; Ya-Ping Sun6:
Metal-Organic Frameworks (MOFs) and Coordination Polymers / Shin-Ichiro Noro ; Susumu Kitagawa7:
Improvement-of Signaling and Sensing by Organization on Surfaces / Part 2:
Nanoparticle and Biomolecular-Nanoparticle Hybrid Supramolecular Complexes for Electrochemical Signaling / Ronen Polsky ; Jason C. Harper ; Susan M. Brozik8:
Modified Nanoparticles as Nanoelectrocatalysts and Amplifying Sensors / Shaojun Guo ; Erkang Wang ; Xiurong Yang9:
Signal Generation with Gold Nanoparticles: Photophyskal Properties for Sensor and Imaging Applications / Qingshan Wei ; Alexander Wei10:
Optical Signaling with Silica Nanoparticles / Fabrizio Mancin ; Paolo Tecilla ; Umberto Tonellato11:
Organically Modified Quantum Dots in Chemical and Biochemical Analysis / María Teresa Fernández Argüelles ; José M. Costa-Fernández ; Rosario Pereiro ; Alfredo Sanz-Medel12:
Control of Supramolecular Nanofabrication, Motion, and Morphology / Part 3:
Chemically Directed Self-Assembly of Nanoparticle Structures on Surfaces / Xing Yi Ling ; David N. Reinhoudt ; Jurriaan Huskens13:
Immobilization and Patterning of Biomolecules on Surfaces / Dorota I. Rozkiewicz ; Ban Jan Ravoo14:
Switchable Host-Guest Chemistry on Surfaces / Jilie Kong ; Chunming Jiang ; Li Mu15:
Nanogated Mesoporous Silica Materials / Igor I. Slowing ; Brian G. Trewyn ; Victor S.-Y. Lin16:
Building Molecular Machines on Surfaces / Alberto Credi ; Serena Silvi ; Margherita Venturi17:
Control of Morphology in Mesoporous and Mesostructured Hybrid Materials / Darren R. Dunphy ; Bernd Smarsly ; C. Jeffrey Brinker18:
Biomimetic Chemistry / Part 4:
Biomimetically Inspired Signaling / Fléix Sancenón ; Ana B. Descalzo19:
Imprinted Functionalized Silica / Maryanne M. Collinson20:
Bioinspired Block Copolymer-Based Hybrid Materials / Marleen Kamperman ; Ulrich Wiesner21:
Interfacial Chemistry, Multifunctionality, and Interdisciplinarity / Part 5:
Emerging Concepts in Interfacial Chemistry of Hybrid Materials: Nanocontainer-Based Self-Healing Coatings / Dmitry G. Shchukin ; Daria V. Andreeva ; Katja Skorb ; Helmuth Möhwald22:
Molecular Schizophrenics: Switchable Materials with Multiple Functions / Robert Byrne ; Dermot Diamond23:
Hybrid Nanomaterials Research: Is It Really Interdisciplinary? / Ismael Rafols ; Martin Meyer ; Jae-Hwan Park24:
Supramolecular Chemistry Meets Hybrid (Nano)Materials: A Brief Look Ahead / 25:
Appendix 1
Index
Preface
Editors and Contributors
Abbreviations
4.

図書

図書
H. Hosono ... [et al.]
出版情報: Oxford : Elsevier, 2006  xvi, 458 p. ; 25 cm
所蔵情報: loading…
5.

図書

図書
[volume editors,] S. Saito, A. Zettl
出版情報: Amsterdam : Elsevier, 2008  xiii, 215 p. ; 25 cm
シリーズ名: Contemporary concepts of condensed matter science
所蔵情報: loading…
目次情報: 続きを見る
List of Contributors
Series Preface
Volume Preface
Nanotubes: An Experimental Overview / A. Zettl1:
Quantum Theories for Carbon Nanotubes / S. Saito2:
The Electronic Properties of Carbon Nanotubes / P. G. Collins ; P. Avouris3:
Raman Spectroscopy of Carbon Nanotubes / M. S. Dresselhaus ; G. Dresselhaus ; R. Saito ; A. Jorio4:
Optical Spectroscopy of Single-Walled Carbon Nanotubes / R. Bruce Weisman5:
Structural Properties and Nanoelectromechanical Systems Applications / J. W. Seo ; L. Forro6:
Low-Energy Electronic Structure of Graphene and its Dirac Theory / E. J. Mele ; C. L. Kane7:
Author Index
Subject Index
List of Contributors
Series Preface
Volume Preface
6.

図書

東工大
目次DB

図書
東工大
目次DB
Takaaki Tsurumi ... [et al.]
出版情報: Boca Raton [Fla.] : CRC Press, c2010  xii, 267 p., [8] p. of plates ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface vii
Acknowledgments ix
Authors xi
Chapter 1 Fundamentals of quantum mechanics and band structure 1
   1.1 Fundamentals of quantum mechanics 1
    1.1.1 Probability amplitude and interference effects 1
    1.1.2 Uncertainty principle 5
    1.1.3 Wave functions 7
    1.1.4 Operators 8
    1.1.5 Eigenvalue and expected value 10
    1.1.6 Expansion theorem 10
    1.1.7 Schroedinger equation 11
    1.1.8 Principle of superposition 13
    1.1.9 Examples of solutions of the Schroedinger equation 14
     1.1.9.1 Electron in a one-dimensional (1D) box 14
     1.1.9.2 Harmonic oscillator 15
     1.1.9.3 Hydrogen atom 16
    1.1.10 Matrix mechanics and bra-ket (Dirac) notation 18
    1.1.11 Comparison of the Heisenberg and Schroedinger approaches to quantum mechanics 20
    1.1.12 Perturbation theory 22
   1.2 Electronic band structure of solids 27
    1.2.1 Free electron Fermi gas 27
    1.2.2 Nearly free electron model (DOS) 31
    1.2.3 Bloch function 33
    1.2.4 Kroenig-Penny model 33
    1.2.5 Tight binding model 35
    1.2.6 Phase velocity, group velocity, and effective mass 37
    1.2.7 Reciprocal lattice and the Brillouin zone 40
    1.2.8 Energy band structure of silicon (Si) 44
    1.2.9 Tight binding approximation for calculating the band structure of graphene 45
    1.2.10 Electron correlation 51
     1.2.10.1 Hartree-Fock approximation 51
     1.2.10.2 Density functional method 54
   1.3 Material properties with respect to characteristic size in nanostructures 56
   Problems 60
   References 60
Chapter 2 Electronic states and electrical properties of nanoscale materials 63
   2.1 Outline 63
   2.2 Low dimensionality and energy spectrum 64
    2.2.1 Space for electrons in materials 64
    2.2.2 Electron DOS of 3D materials with macroscopic dimensions 65
    2.2.3 Electron DOS in 2D materials (nanosheets) 67
    2.2.4 Electron DOS in lD materials (nanowires) 72
    2.2.5 Quantized conductance in 1D nanowire systems 74
    2.2.6 Electron DOS in 0D materials (nanodots) 77
   2.3 Quantization 79
    2.3.1 2D square wells 80
    2.3.2 2D cylindrical wells 83
    2.3.3 Shape effect on the quantized states 85
    2.3.4 Finite potential wells 87
    2.3.5 Band dispersion effect 93
   2.4 Edge (surface)-localized states 96
   2.5 Charging effect 100
   2.6 Tunneling phenomena 103
   2.7 Limiting factors for size effects 111
    2.7.1 Thermal fluctuation 111
    2.7.2 Lifetime broadening effect 113
   2.8 Electronically induced stable nanostructures 115
    2.8.1 Magic numbers in clusters 116
    2.8.2 Electronic growth 119
   Problems 122
   References 123
Chapter 3 Optical properties and interactions of nanoscale materials 125
   3.1 Size-dependent optical properties: Absorption and emission 125
    3.1.1 Basic quantum mechanics of linear optical transitions 126
    3.1.2 General concept of excitons 133
    3.1.3 Wannier excitons 135
    3.1.4 Size effects in high-dielectric-constant materials 136
    3.1.5 Size effects in π-conjugated systems 140
    3.1.6 Strongly interacting π-conjugated systems: A molecular dimer 144
    3.1.7 Molecular Frenkel exciton 149
    3.1.8 Size effects in molecular excitons: Coherence length and cooperative phenomena 153
    3.1.9 Effects of finite number of optical electrons 157
   3.2 Size-dependent optical properties: Absorption and scattering 158
    3.2.1 Basic theory of light scattering 160
    3.2.2 Size-dependent scattering from dielectric spheres: Mie solutions 164
    3.2.3 Optical properties of metal nanoparticles: Plasmonics 169
    3.2.4 Local field enhancement and surface-enhanced Raman scattering 176
   3.3 Size-dependent electromagnetic interactions: Particle-particle 179
    3.3.1 Radiative energy transfer 179
    3.3.2 Foerster resonant energy transfer (FRET) 180
    3.3.3 Electron-exchange (Dexter) energy transfer 187
    3.3.4 Photo-induced electron transfer 190
   3.4 Size-dependent interactions: Particle-light interactions in finite geometries 191
    3.4.1 Optical interactions in microcavities 191
    3.4.2 Effects of dielectric interfaces 198
   Problems 201
   References 204
Chapter 4 Magnetic and magnetotransport properties of nanoscale materials 207
   4.1 Fundamentals of magnetism 207
    4.1.1 Magnetic ions and magnetic ordering 207
    4.1.2 Exchange interaction 208
    4.1.3 Mean field theory of ferromagnetism 211
   4.2 Size and surface effects in 3D confined systems 213
    4.2.1 Quantization of electronic structures and the Kubo effect 214
    4.2.2 Surface magnetism of transition noble metals 220
   4.3 Ferromagnetic domain-wall-related phenomena 229
    4.3.1 Macroscopic quantum tunneling in magnetic nanostructures 229
    4.3.2 Electron scattering at domain walls: Quantum coherence 233
    4.3.3 Spin current and spin transfer torque-current-induced domain wall motion 235
   4.4 Spin transport in magnetic nanostructures: Magnetic interface effect 240
    4.4.1 GMR and TMR effect: Spin-dependent scattering in multilayers and tunneling junctions 240
    4.4.2 Spin accumulation and current-perpendicular-to-plane (CPP) GMR: Spin diffusion length 245
    4.4.3 Spin Hall effect: Side jump and skew scattering due to spin-orbit coupling 249
   Problems 253
   References 253
Index 257
Preface vii
Acknowledgments ix
Authors xi
7.

図書

図書
Jin Zhong Zhang
出版情報: Singapore : World Scientific, c2009  xvi, 383 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
Introduction / 1:
Spectroscopic Techniques for Studying Optical Properties of Nanomaterials / 2:
UV-visible electronic absorption spectroscopy / 2.1:
Operating principle: Beer's law / 2.1.1:
Instrument: UV-visible spectrometer / 2.1.2:
Spectrum and interpretation / 2.1.3:
Phololuminescence and electroluminescence spectroscopy / 2.2:
Operating principle / 2.2.1:
Instrumentation: spectrofluorometer / 2.2.2:
Electroluminescence (EL) / 2.2.3:
Infrared (IR) and Raman vibrational spectroscopy / 2.3:
IR spectroscopy / 2.3.1:
Raman spectroscopy / 2.3.2:
Time-resolved optical spectroscopy / 2.4:
Nonlinear optical spectroscopy: harmonic generation and up-conversion / 2.5:
Single nanoparticle and single molecule spectroscopy / 2.6:
Dynamic light scattering (DLS) / 2.7:
Summary / 2.8:
Other Experimental Techniques: Electron Microscopy and X-ray / 3:
Microscopy: AFM, STM, SEM and TEM / 3.1:
Scanning probe microscopy (SPM): AFM and STM / 3.1.1:
Electron microscopy: SEM and TEM / 3.1.2:
X-ray: XRD, XPS, and XAES, SAXS / 3.2:
Electrochemistry and photoelectrochemistry / 3.3:
Nuclear magnetic resonance (NMR) and electron spin resonance (ESR) / 3.4:
Nuclear magnetic resonance (NMR) / 3.4.1:
Electron spin resonance (ESR) / 3.4.2:
Synthesis and Fabrication of Nanomaterials / 3.5:
Solution chemical methods / 4.1:
General principle for solution-based colloidal nanoparticle synthesis / 4.1.1:
Metal nanomaterials / 4.1.2:
Semiconductor nanomaterials / 4.1.3:
Metal oxides / 4.1.4:
Complex nanostnictures / 4.1.5:
Composite and hetero-junction nanomaterials / 4.1.6:
Gas or vapor-based methods of synthesis: CVD, MOCVD and MBE / 4.2:
Metals / 4.2.1:
Semiconductors / 4.2.2:
Complex and composite structures / 4.2.3:
Nanolithography techniques / 4.3:
Bioconjugation / 4.4:
Toxicity and green chemistry approaches for synthesis / 4.5:
Optical Properties of Semiconductor Nanomaterials / 4.6:
Some basic concepts about semiconductors / 5.1:
Crystal structure and phonons / 5.1.1:
Electronic energy bands and bandgap / 5.1.2:
Electron and hole effective masses / 5.1.3:
Density-of-states, Fermi energy, and carrier concentration / 5.1.4:
Charge carrier mobility and conductivity / 5.1.5:
Exciton, exciton binding energy, and exciton Bohr radius / 5.1.6:
Fundamental optical absorption due to electronic transitions / 5.1.7:
Trap stales and large surface-to-volume ratio / 5.1.8:
Energy levels and density of states in reduced dimension systems / 5.2:
Energy levels / 5.2.1:
Density of states (DOS) in nanomaterials / 5.2.2:
Size dependence of absorption coefficient, oscillator strength, and exciton lifetime / 5.2.3:
Electronic structure and electronic properties / 5.3:
Electronic structure of nanomaterials / 5.3.1:
Electron-phonon interaction / 5.3.2:
Optical properties of semiconductor nanomaterials / 5.4:
Absorption: direct and indirect bandgap transitions / 5.4.1:
Emission: photoluminescence and Raman scattering / 5.4.2:
Emission: chemiluminescence and electroluminescence / 5.4.3:
Optical properties of assembled nanostructures: interaction between nanoparticles / 5.4.4:
Shape dependent optical properties / 5.4.5:
Doped semiconductors: absorption and luminescence / 5.5:
Nonlinear optical properties / 5.6:
Absorption saturation and harmonic generation / 5.6.1:
luminescence up-conversion / 5.6.2:
Optical properties of single particles / 5.7:
Optical Properties of Metal Oxide Nanomaterials / 5.8:
Optical absorption / 6.1:
Optical emission / 6.2:
Other optical properties: doped and sensitized metal oxides / 6.3:
Nonlinear optical properties: luminescence up-conversion (LUC) / 6.4:
Optical Properties of Metal Nanomaterials / 6.5:
Strong absorption and lack of photoemission / 7.1:
Surface plasmon resonance (SPR) / 7.2:
Correlation between structure and SPR: a theoretical perspective / 7.3:
Effects of size and surface on SPR of metal nanoparticles / 7.3.1:
The effect of shape on SPR / 7.3.2:
The effect of substrate on SPR / 7.3.3:
Effect of particle-particle interaction on SPR / 7.3.4:
Surface-eruHanced Raman scattering (SERS) / 7.4:
Background of SERS / 7.4.1:
Mechanism of SERS / 7.4.2:
Distance dependence of SERS / 7.4.3:
Location and orientation dependence of SERS / 7.4.4:
Dependence of SERS on substrate / 7.4.5:
Single nanoparticle and single molecule SERS / 7.4.6:
Optical Properties of Composite Nanostructures / 7.5:
Inorganic semiconductor-insulator and semiconductor-semiconductor / 8.1:
Inorganic metal-insulator / 8.2:
Inorganic semiconductor-metal / 8.3:
Inorganic-organic (polymer) / 8.4:
Nonconjugated polymers / 8.4.1:
Conjugated polymers / 8.4.2:
Inorganic-biological materials / 8.5:
Charge Carrier Dynamics in Nanomaterials / 8.6:
Experimental techniques for dynamics studies in nanomaterials / 9.1:
Electron and photon relaxation dynamics in metal nanomaterials / 9.2:
Electronic dephasing and spectral line shape / 9.2.1:
Electronic relaxation due to electron-phonon interaction / 9.2.2:
Photon relaxation dynamics / 9.2.3:
Charge carrier dynamics in semiconductor nanomaterials / 9.3:
Spectral line width and electronic dephasing / 9.3.1:
Intraband charge carrier energy relaxation / 9.3.2:
Charge carrier trapping / 9.3.3:
Interband electron-hole recombination or single excitonic delay / 9.3.4:
Charge earner dynamics in doped semiconductor nanomaterials / 9.3.5:
Nonlinear charge carrier dynamics / 9.3.6:
Charge carrier dynamics in metal oxide and insulator nanomaterials / 9.4:
Photoinduced charge transfer dynamics / 9.5:
Applications of Optical Properties of Nanomaterials / 9.6:
Chemical and biomedical detection, imaging and therapy / 10.1:
Luminescence-based detection / 10.1.1:
Surface plasmon resonance (SPR) detection / 10.1.2:
SERS for detection / 10.1.3:
Chemical and biochemical imaging / 10.1.4:
Biomedical therapy / 10.1.5:
Energy conversion: PV and PEC / 10.2:
PV solar cells / 10.2.1:
Photoelectrochemical cells (PEC) / 10.2.2:
Environmental protection: photocatalytic and photochemical reactions / 10.3:
Lasers, LEDs, and solid state lighting / 10.4:
Lasing and lasers / 10.4.1:
Light emitting diodes (LEDs) / 10.4.2:
Solid state lighting: ACPEL / 10.4.3:
Optical detectors / 10.4.4:
Optical filters: photonic bandgap materials or photonic crystals / 10.5:
Index / 10.6:
Preface
Acknowledgments
Introduction / 1:
8.

図書

図書
edited by Sang-Eon Park ... [et al.]
出版情報: Amsterdam : Elsevier, 2003  xxiii, 823 p. ; 25 cm
シリーズ名: Studies in surface science and catalysis ; v. 146
所蔵情報: loading…
目次情報: 続きを見る
Synthesis and materials / I:
Characterization / II:
Modification and composite / III:
Application and catalysis / IV:
Synthesis and materials / I:
Characterization / II:
Modification and composite / III:
9.

図書

図書
edited by Toshiaki Enoki, Tsuneya Ando
出版情報: Singapore : Pan Stanford, c2013  xv, 460 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction
Theory of Electronic States and Transport in Graphene
Experimental Approach to Graphene Electron Transport for Device Applications
Electronic Properties of Nanographene
Spin Structure of Polycyclic Aromatic Hydrocarbons (PAHs)
Experimental Approach to Electronic and Magnetic Properties of Nanographene
Index
Introduction
Theory of Electronic States and Transport in Graphene
Experimental Approach to Graphene Electron Transport for Device Applications
10.

図書

図書
edited by Mahmood Aliofkhazraei ... [et al.]
出版情報: Boca Raton, Fla. : CRC Press, Taylor & Francis Group, c2016  xviii, 583 p. ; 29 cm
シリーズ名: Graphene science handbook ; [v. 2]
所蔵情報: loading…
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼