close
1.

図書

図書
Geoffrey A. Ozin and Andre C. Arsenault
出版情報: Cambridge, UK : Royal Society of Chemistry, c2005  xl, 628 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
List of Acronyms
Teaching (Nano)Materials
Learning (Nano)Materials
About the Authors
Acknowledgements
Nanofood for Thought - Thinking about Nanochemistry, Nanoscience, Nanotechnology and Nanosafety
Nanochemistry Basics / Chapter 1:
Materials Self-Assembly / 1.1:
Big Bang to the Universe / 1.2:
Why Nano? / 1.3:
What do we Mean by Large and Small Nanomaterials? / 1.4:
Do it Yourself Quantum Mechanics / 1.5:
What is Nanochemistry? / 1.6:
Molecular vs. Materials Self-Assembly / 1.7:
What is Hierarchical Assembly? / 1.8:
Directing Self-Assembly / 1.9:
Supramolecular Vision / 1.10:
Geneology of Self-Assembling Materials / 1.11:
Unlocking the Key to Porous Solids / 1.12:
Learning from Biominerals - Form is Function / 1.13:
Can you Curve a Crystal? / 1.14:
Patterns, Patterns Everywhere / 1.15:
Synthetic Creations with Natural Form / 1.16:
Two-Dimensional Assemblies / 1.17:
SAMs and Soft Lithography / 1.18:
Clever Clusters / 1.19:
Extending the Prospects of Nanowires / 1.20:
Coercing Colloids / 1.21:
Mesoscale Self-Assembly / 1.22:
Materials Self-Assembly of Integrated Systems / 1.23:
References / 1.24:
Nanofood for Thought - Nanochemistry, Genealogy Materials Self-Assembly, Length Scales
Chemical Patterning and Lithography / Chapter 2:
Soft Lithography / 2.1:
What are Self-Assembled Monolayers? / 2.2:
The Science and Art of Soft Lithography / 2.3:
Patterning Wettability? / 2.4:
Condensation Figures / 2.5:
Microlens Arrays / 2.6:
Nanoring Arrays / 2.7:
Patterning the Solid State / 2.8:
Primed for Printing Polymers / 2.9:
Beyond Molecules - Transfer Printing of Thin Films / 2.10:
Electrically Contacting SAMS / 2.11:
SAM Crystal Engineering / 2.12:
Learning from Nature's Biocrystal Engineering / 2.13:
Colloidal Microsphere Patterns / 2.14:
Switching SAM Function / 2.15:
Patterning by Photocatalysis / 2.16:
Reversibly Switching SAMs / 2.17:
Electrowettability Switch / 2.18:
Sweet Chips / 2.19:
All Fall Down in a Row Lithography / 2.20:
Nanofood for Thought - Soft Lithography, SAMs, Patterning / 2.21:
Layer-by-Layer Self-Assembly / Chapter 3:
Building One Layer at a Time / 3.1:
Electrostatic Superlattices / 3.2:
Organic Polyelectrolyte Multilayers / 3.3:
Layer-by-Layer Smart Windows / 3.4:
How Thick is Thin? / 3.5:
Assembling Metallopolymers / 3.6:
Directly Imaging Polyelectrolyte Multilayers / 3.7:
Polyelectrolyte-Colloid Multilayers / 3.8:
Graded Composition LbL Films / 3.9:
LbL MEMS / 3.10:
Trapping Active Proteins / 3.11:
Layering on Curved Surfaces / 3.12:
Crystal Engineering of Oriented Zeolite Film / 3.13:
Zeolite-Ordered Multicrystal Arrays / 3.14:
Crosslinked Crystal Arrays / 3.15:
Layering with Topological Complexity / 3.16:
Patterned Multilayers / 3.17:
Non-Electrostatic Layer-by-Layer Assembly / 3.18:
Low Pressure Layers / 3.19:
Layer-by-Layer Self-Limiting Reactions / 3.20:
Nanofood for Thought - Designer Monolayers, Multilayers, Materials Flatland / 3.21:
Nanocontact Printing and Writing - Stamps and Tips / Chapter 4:
Sub-100 nm Soft Lithography / 4.1:
Extending Microcontact Printing / 4.2:
Putting on the Pressure / 4.3:
Defect Patterning - Topologically Directed Etching / 4.4:
Below 50 nm Nanocontact Printing / 4.5:
Nanocontact Writing - Dip Pen Nanolithography / 4.6:
DPN of Silicon / 4.7:
DPN on Glass / 4.8:
Nanoscale Writing on Seminconductor Nanowires / 4.9:
Sol-Gel DPN / 4.10:
Soft Patterning of Hard Magnets / 4.11:
Writing Molecular Recognition / 4.12:
DPN Writing Protein Recognition Nanostructures / 4.13:
Patterning Bioconstructions / 4.14:
Eating Patterns - Enzyme DPN / 4.15:
Electrostatic DPN / 4.16:
Electrochemical DPN / 4.17:
SPM Nano-Electrochemistry / 4.18:
Beyond DPN - Whittling Nanostructures / 4.19:
Combi Nano - DPN Combinatorial Libraries / 4.20:
Nanoplotters / 4.21:
Nanoblotters / 4.22:
Scanning Probe Contact Printing (SP-CP) / 4.23:
Dip Pen Nanolithography Stamp Tip - Beyond DPN CP / 4.24:
Best of Both Worlds / 4.25:
The Nanogenie is out of the Bottle / 4.26:
Nanofood for Thought - Sharper Chemical Patterning Tools / 4.27:
Nanorod, Nanotube, Nanowire Self-Assembly / Chapter 5:
Building Block Assembly / 5.1:
Templating Nanowires / 5.2:
Modulated Diameter Gold Nanorods / 5.3:
Modulated Composition Nanorods / 5.4:
Barcoded Nanorod Orthogonal Self-Assembly / 5.5:
Self-Assembling Nanorods / 5.6:
Magnetic Nanorods Bunch Up / 5.7:
Magnetic Nanorods and Magnetic Nanoclusters / 5.8:
An Irresistable Attraction for Biomolecules / 5.9:
Hierarchically Ordered Nanorods / 5.10:
Nanorod Devices / 5.11:
Nanotubes from Nanoporous Templates / 5.12:
Layer-by-Layer Nanotubes from Nanorods / 5.13:
Synthesis of Single Crystal Semiconductor Nanowires / 5.14:
Vapor-Liquid-Solid Synthesis of Nanowires / 5.15:
What Controls Nanowire-Oriented Growth? / 5.16:
Supercritical Fluid-Liquid-Solid Synthesis / 5.17:
Nanowire Quantum Size Effects / 5.18:
Zoo of Nanowire Compositions and Architectures / 5.19:
Single-Source Precursors / 5.20:
Manipulating Nanowires / 5.21:
Crossed Semiconductor Nanowires - Smallest LED / 5.22:
Nanowire Diodes and Transistors / 5.23:
Nanowire Sensors / 5.24:
Catalytic Nanowire Electronics / 5.25:
Nanowire Heterostructures / 5.26:
Longitudinal Nanowire Superlattices / 5.27:
Axial Nanowire Heterostructures / 5.28:
Nanowires Branch Out / 5.29:
Coaxially Gated Nanowire Transistor / 5.30:
Vertical Nanowire Field Effect Transistors / 5.31:
Integrated Metal-Semiconductor Nanowires - Nanoscale Electrical Contacts / 5.32:
Photon-Driven Nanowire Laser / 5.33:
Electrically Driven Nanowire Laser / 5.34:
Nanowire UV Photodetectors / 5.35:
Simplifying Complex Nanowires / 5.36:
Nanowire Casting of Single-Crystal Nanotubes / 5.37:
Solution-Phase Routes to Nanowires / 5.38:
Spinning Nanowire Devices / 5.39:
Hollow Nanofibers by Electrospinning / 5.40:
Carbon Nanotubes / 5.41:
Carbon Nanotube Structure and Electrical Properties / 5.42:
Gone Ballistic / 5.43:
Carbon Nanotube Nanomechanics / 5.44:
Carbon Nanotube Chemistry / 5.45:
Carbon Nanotubes All in a Row / 5.46:
Carbon Nanotube Photonic Crystal / 5.47:
Putting Carbon Nanotubes Exactly Where You Want Them / 5.48:
The Nanowire Pitch Challenge / 5.49:
Integrated Nanowire Nanoelectronics / 5.50:
A Small Thought at the End of a Large Chapter / 5.51:
Nanofood for Thought - Wires, Rods, Tubes, Low Dimensionality / 5.52:
Nanocluster Self-Assembly / Chapter 6:
Building-Block Assembly / 6.1:
When is a Nanocluster a Nanocrystal or Nanoparticle? / 6.2:
Synthesis of Capped Semiconductor Nanoclusters / 6.3:
Electrons and Holes in Nanocluster Boxes / 6.4:
Watching Nanoclusters Grow / 6.5:
Nanocrystals in Nanobeakers / 6.6:
Nanocluster Semiconductor Alloys and Beyond / 6.7:
Nanocluster Phase Transformation / 6.8:
Capped Gold Nanoclusters - Nanonugget Rush / 6.9:
Alkanethiolate Capped Nanocluster Diagnostics / 6.10:
Periodic Table of Capped Nanoclusters / 6.11:
There's Gold in Them Thar Hills! / 6.12:
Water-Soluble Nanoclusters / 6.13:
Capped Nanocluster Architectures and Morphologies / 6.14:
Alkanethiolate Capped Silver Nanocluster Superlattice / 6.15:
Crystals of Nanocrystals / 6.16:
Beyond Crystal of Nanocrystals - Binary Nanocrystal Superlattices / 6.17:
Capped Magnetic Nanocluster Superlattice - High Density Data Storage Materials / 6.18:
Alloying Core-Shell Magnetic Nanoclusters / 6.19:
Soft Lithography of Capped Nanoclusters / 6.20:
Organizing Nanoclusters by Evaporation / 6.21:
Electroluminescent Semiconductor Nanoclusters / 6.22:
Full Color Nanocluster-Polymer Composites / 6.23:
Capped Semiconductor Nanocluster Meets Biomolecule / 6.24:
Nanocluster DNA Sensors - Besting the Best / 6.25:
Semiconductor Nanoclusters Extend and Branch Out / 6.26:
Branched Nanocluster Solar Cells / 6.27:
Tetrapod of Tetrapods - Towards Inorganic Dendrimers / 6.28:
Golden Tips - Making Contact with Nanorods / 6.29:
Flipping a Nanocluster Switch / 6.30:
Photochromic Metal Nanoclusters / 6.31:
Carbon Nanoclusters - Buckyballs / 6.32:
Building Nanodevices with Buckyballs / 6.33:
Carbon Catalysis with Buckyball / 6.34:
Nanofood for Thought - Nanoclusters, Nanocrystals, Quantum Dots, Quantum Size Effects / 6.35:
Microspheres - Colors from the Beaker / Chapter 7:
Nature's Photonic Crystals / 7.1:
Photonic Crystals / 7.2:
Photonic Semiconductors / 7.3:
Defects, Defects, Defects / 7.4:
Computing with Light / 7.5:
Color Tunability / 7.6:
Transferring Nature's Photonic Crystal Technology to the Chemistry Laboratory / 7.7:
Microsphere Building Blocks / 7.8:
Silica Microspheres / 7.9:
Latex Microspheres / 7.10:
Multi-Shell Microspheres / 7.11:
Basics of Microsphere Self-Assembly / 7.12:
Microsphere Self-Assembly - Crystals and Films / 7.13:
Colloidal Crystalline Fluids / 7.14:
Beyond Face Centered Cubic Packing of Microspheres / 7.15:
Templates - Confinement and Epitaxy / 7.16:
Photonic Crystal Fibers / 7.17:
Photonic Crystal Marbles / 7.18:
Optical Properties of Colloidal Crystals - Combined Bragg-Snell Laws / 7.19:
Basic Optical Properties of Colloidal Crystals / 7.20:
How Perfect is Perfect? / 7.21:
Cracking Controversy / 7.22:
Synthesizing a Full Photonic Band Gap / 7.23:
Writing Defects / 7.24:
Getting Smart with Planar Defects / 7.25:
Switching Light with Light / 7.26:
Internal Light Sources / 7.27:
Photonic Inks / 7.28:
Color Oscillator / 7.29:
Photonic Crystal Sensors / 7.30:
Colloidal Photonic Crystal Solar Cell / 7.31:
Thermochromic Colloidal Photonic Crystal Switch / 7.32:
Liquid Crystal Photonic Crystal / 7.33:
Encrypted Colloidal Crystals / 7.34:
Gazing into the Photonic Crystal Ball / 7.35:
Nanofood for Thought - Colloidal Assembly, Colloidal Crystals, Colloidal Crystal Devices, Structural Color / 7.36:
Microporous and Mesoporous Materials from Soft Building Blocks / Chapter 8:
Escape from the Zeolite Prison / 8.1:
A Periodic Table of Materials Filled with Holes / 8.2:
Modular Self-Assembly of Microporous Materials / 8.3:
Hydrogen Storage Coordination Frameworks / 8.4:
Overview and Prospects of Microporous Materials / 8.5:
Mesoscale Soft Building Blocks / 8.6:
Micelle Versus Liquid Crystal Templating Paradox / 8.7:
Designing Function into Mesoporous Materials / 8.8:
Tuning Length Scales / 8.9:
Mesostructure and Dimensionality / 8.10:
Mesocomposition - Nature of Precursors / 8.11:
Mesotexture / 8.12:
Periodic Mesoporous Silica-Polymer Hybrids / 8.13:
Guests in Mesopores / 8.14:
Capped Nanocluster Meets Surfactant Mesophase / 8.15:
Marking Time in Mesostructured Silica - New Approach to Optical Data Storage / 8.16:
Sidearm Mesofunctionalization / 8.17:
Organics in the Backbone / 8.18:
Mesomorphology - Films, Interfaces, Mesoepitaxy / 8.19:
Stand Up and Be Counted / 8.20:
Mesomorphology - Spheres, Other Shapes / 8.21:
Mesomorphology - Patterned Films, Soft Lithography, Micromolding / 8.22:
Mesomorphology - Morphosynthesis of Curved Form / 8.23:
Chiral Surfactant Micelles - Chiral Mesoporous Silica / 8.24:
Mesopore Replication / 8.25:
Mesochemistry and Topological Defects / 8.26:
Mesochemistry - Synthesis in "Intermediate" Dimensions / 8.27:
Nanofood for Thought - Soft Blocks Template Hard Precursors, Holey Materials / 8.28:
Self-Assembling Block Copolymers / Chapter 9:
Polymers, Polymers Everywhere in Nanochemistry / 9.1:
Block Copolymer Self-Assembly - Chip Off the Old Block / 9.2:
Nanostructured Ceramics / 9.3:
Nano-objects / 9.4:
Block Copolymer Thin Films / 9.5:
Electrical Ordering / 9.6:
Spatial Confinement of Block Copolymers / 9.7:
Nanoepitaxy / 9.8:
Block Copolymer Lithography / 9.9:
Decorating Block Copolymers / 9.10:
A Case of Wettability / 9.11:
Nanowires from Block Copolymers / 9.12:
Making Micelles / 9.13:
Assembling Inorganic Polymers / 9.14:
Harnessing Rigid Rods / 9.15:
Supramolecular Assemblies / 9.16:
Supramolecular Mushrooms / 9.17:
Structural Color from Lightscale Block Copolymers / 9.18:
Block Copolypeptides / 9.19:
Block Copolymer Biofactories / 9.20:
Nanofood for Thought - Block Copolymer Self-Assembling Nanostructures / 9.21:
Biomaterials and Bioinspiration / Chapter 10:
Nature did it First / 10.1:
To Mimic or to Use? / 10.2:
Faux Fossils / 10.3:
Nature's Siliceous Sculptures / 10.4:
Ancient to Modern Synthetic Morphology / 10.5:
Biomimicry / 10.6:
Biomineralization and Biomimicry Analogies / 10.7:
Learning from Nature / 10.8:
Viral Cage Directed Synthesis of Nanoclusters / 10.9:
Viruses that Glitter / 10.10:
Polynucleotide Directed Nanocluster Assembly / 10.11:
DNA Coded Nanocluster Chains / 10.12:
Building with DNA / 10.13:
Bacteria Directed Materials Self-Assembly / 10.14:
Using a Virus that is Benign, to Align / 10.15:
Magnetic Spider Silk / 10.16:
Protein S-Layer Masks / 10.17:
Morphosynthesis - Inorganic Materials with Complex Form / 10.18:
Echinoderm vs. Block Copolymers / 10.19:
Fishy Top-Down Photonic Crystals / 10.20:
Aluminophosphates Shape Up / 10.21:
Better Bones Through Chemistry / 10.22:
Mineralizing Nanofibers / 10.23:
Biological Lessons in Materials Design / 10.24:
Surface Binding Through Directed Evolution / 10.25:
Nanowire Evolution / 10.26:
Biomolecular Motors - Nanomachines Everywhere / 10.27:
How Biomotors Work / 10.28:
Kinesin - Walk Along / 10.29:
ATPase - Biomotor Nanopropellors / 10.30:
(Bio)Inspiration / 10.31:
Nanofood for Thought - Organic Matrix, Biomineralization, Biomimetics, Bioinspiration / 10.32:
Self-Assembly of Large Building Blocks / Chapter 11:
Self-assembling Supra-micron Shapes / 11.1:
Synthesis Using the "Capillary Bond" / 11.2:
Crystallizing Large Polyhedral-Shaped Building Blocks / 11.3:
Self-Assembling 2D and 3D Electrical Circuits and Devices / 11.4:
Crystallizing Micron-Sized Planar Building Blocks / 11.5:
Polyhedra with Patterned Faces that Autoconstruct / 11.6:
Large Sphere Building Blocks Self-Assemble into 3D Crystals / 11.7:
Synthetic MEMS? / 11.8:
Magnetic Self-Assembly / 11.9:
Dynamic Self-Assembly / 11.10:
Autonomous Self-Assembly / 11.11:
Self-Assembly and Synthetic Life / 11.12:
Nanofood for Thought - Static and Dynamic, Capillary Bond, Shape Assembly / 11.13:
Nano and Beyond / Chapter 12:
Assembling the Future / 12.1:
Microfluidic Computing / 12.2:
Fuel Cells - Hold the Membrane / 12.3:
Curved Prints / 12.4:
Beating the Ink Diffusion Dilemma / 12.5:
Tip of the Pyramid / 12.6:
Biosensing Membranes / 12.7:
Crossing Nanowires / 12.8:
Complete Crystallographic Control / 12.9:
Down to the Wire / 12.10:
Shielded Nanowires / 12.11:
Writing 3D Nanofluidic and Nanophotonic Networks / 12.12:
Break-and-Glue Transistor Assembly / 12.13:
Turning Nanostructures Inside-out / 12.14:
Confining Spheres / 12.15:
Escape from the Silica and Polystyrene Prison / 12.16:
Smart Dust / 12.17:
Light Writing for Light Guiding / 12.18:
Nanoring Around the Collar / 12.19:
A Meso Rubbed Right / 12.20:
Fungus with the Midas Touch / 12.21:
Self-assembled Electronics / 12.22:
Gears Sink Their Teeth into the Interface / 12.23:
Materials Retro-assembly / 12.24:
Matter that Matters - Materials of the "Next Kind" / 12.25:
Nanofood for Thought - Nano Potpourri / 12.26:
Nanochemistry Nanolabs / Chapter 13:
Origin of the Term "Self-Assembly" / Appendix A:
Cytotoxicity of Nanoparticles / Appendix B:
Walking Macromolecules Through Colloidal Crystals / Appendix C:
Patterning Nanochannel Alumina Membranes With Single Channel Resolution / Appendix D:
Muscle Powered Nanomachines / Appendix E:
Bacteria Power / Appendix F:
Chemically Driven Nanorod Motors / Appendix G:
Subject Index
List of Acronyms
Teaching (Nano)Materials
Learning (Nano)Materials
2.

図書

図書
editors, J. Anthony C. Bland, Adrian Ionescu
出版情報: New York : American Institute of Physics, 2008  xix, 196 p. ; 25 cm
シリーズ名: AIP conference proceedings ; 1025
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction
Magnetic Entities and Materials for Biomedical Applications / Part 1:
Magnetic Biosensors-From Molecule to System / M. W. J. Prins
The In-flow Capture of Superparamagnetic Nanoparticles for Targeting of Gene Therapeutics / N. J. Darton ; B. Hallmark ; X. Han ; S. Palit ; M. R. Mackley ; D. Darling ; F. Farzaneh ; N. K. H. Slater
Progress in Using Magnetic Nanoobjects for Biomedical Diagnostics / N. Kataeva ; J. Schotter ; A. Shoshi ; R. Heer ; M. Eggeling ; O. Bethge ; C. Nohammer ; H. Bruckl
Templated Growth and Selective Functionalization of Magnetic Nanowires / F. van Belle ; J. J. Palfreyman ; W. S. Lew ; T. Mitrelias ; J. A. C. Bland
Controlled Manipulation of Nanoentities in Suspension / D. L. Fan ; R. C. Cammarata ; C. L. Chien
Digitally Encoded Exchange Biased Multilayers / M. Barbagallo ; A. Ionescu
Magnetic Microtags and Magnetic Encoding for Applications in Biotechnology / T. Trypiniotis ; K. P. Kopper ; S. J. Steinmuller ; P. A. Robertson
High Throughput Biological Analysis Using Multi-bit Magnetic Digital Planar Tags / B. Hong ; J.-R. Jeong ; J. Llandro ; T. J. Hayward
Magnetically Controlled Shape Memory Behaviour-Materials and Applications / A. P. Gandy ; A. Sheikh ; K. Neumann ; K.-U. Neumann ; D. Pooley ; K. R. A. Ziebeck
Magnetic Biosensors and Detection Systems / Part 2:
Giant Magnetoresistive Biochips for Biomarker Detection and Genotyping: An Overview / S. X. Wang
Towards Magnetic Suspension Assay Technology / C. H. W. Barnes
Detection of Magnetic-based Biomolecules Using MR Sensors / M. Volmer ; M. Avram
Giant Magnetoimpedance for Biosensing in Drug Delivery / V. Fal-Miyar ; A. Kumar ; S. Mohapatra ; S. Shirley ; N. A. Frey ; J. M. Barandiaran ; G. V. Kurlyandskaya
Residence Times Difference Fluxgate Magnetometer for Magnetic Biosensing / B. Ando ; A. Ascia ; S. Baglio ; A. R. Bulsara ; V. In ; N. Pitrone ; C. Trigona
Integrated Spintronic Platforms for Biomolecular Recognition Detection / V. C. Martins ; F. A. Cardoso ; J. Loureiro ; M. Mercier ; J. Germano ; S. Cardoso ; R. Ferreira ; L. P. Fonesca ; L. Sousa ; M. S. Piedade ; P. P. Freitas
Moment Selective Digital Detection of Single Magnetic Beads for Multiplexed Bioassays / D. Morecroft ; F. J. Castano ; I. A. Colin ; C. A. Ross
Advanced Magnetoresistance Sensing of Rotation Rate for Biomedical Applications / A. Avram
Author Index
Preface
Introduction
Magnetic Entities and Materials for Biomedical Applications / Part 1:
3.

図書

図書
edited by Sam Zhang
出版情報: Boca Raton : CRC Press, c2010  xi, 241 p. ; 26 cm
シリーズ名: Handbook of nanostructured thin films and coatings / edited by Sam Zhang
所蔵情報: loading…
4.

図書

図書
edited by Sam Zhang
出版情報: Boca Raton : CRC Press, c2010  xii, 538 p. ; 26 cm
シリーズ名: Handbook of nanostructured thin films and coatings / edited by Sam Zhang
所蔵情報: loading…
5.

図書

図書
edited by Christian Hess and Robert Schlögl
出版情報: Cambridge [UK] : Royal Society of Chemistry, c2011  xiv, 438 p. ; 24 cm
シリーズ名: RSC nanoscience & nanotechnology ; no. 19
所蔵情報: loading…
6.

図書

図書
edited by Challa S. S. R. Kumar
出版情報: Weinheim : Wiley-VCH, c2010  xx, 445 p. ; 25 cm
シリーズ名: Nanomaterials for the life sciences / edited by Challa S.S.R. Kumar ; v. 8
所蔵情報: loading…
7.

図書

図書
edited by Challa S. S. R. Kumar
出版情報: Weinheim : Wiley-VCH, c2010  xxii, 564 p. ; 25 cm
シリーズ名: Nanomaterials for the life sciences / edited by Challa S.S.R. Kumar ; v. 7
所蔵情報: loading…
8.

図書

図書
Lei Jiang, Lin Feng
出版情報: Beijing : Chemical Industry Press , Singapore : World Scientific, c2010  xiii, 346 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
About the Authors
Summary of Biomimetic Smart Nanoscale Interfacial Materials / Chapter 1:
Definition of Smart Materials / 1.1:
Designing Concept of Bioinspired Smart Interfacial Materials / 1.2:
Typical Examples of Using Above-Mentioned Five Principles to Design Smart Materials / 1.3:
Intellectualizcd Design of Biomimetic Interfacial Materials / 1.4:
References
Living Organisms with Special Surface Performance / Chapter 2:
Self-Cleaning Property of the Surfaces of Plant Leaves / 2.1:
Surface Anisotropy / 2.2:
The Self-Cleaning and Anti-Reflection Functions of the Surfaces of Insect Wings / 2.3:
Walking on Water -- Water Strider / 2.4:
Climbing Up the Wall -- Gecko / 2.5:
A Desert Water-Collecting Insect -- Desert Beetle / 2.6:
Master of Hiding -- Color-Changing Desert Beetle / 2.7:
Structural Color in the Nature / 2.8:
Wettability of the Solid Surface / Chapter 3:
Basic Theory of Wettability / 3.1:
Surfaces with Special Wettability / 3.2:
Contact Angle Hysteresis / 3.3:
Biomimic Superhydrophobic Surface / Chapter 4:
Methods of Preparing Superhydrophobic Surfaces / 4.1:
Multi-functional Superhydrophobic Surfaces / 4.2:
Smart Nanoscale Interfacial Materials with Special Wettability / Chapter 5:
Superamphiphobic Surface / 5.1:
Surface with Superhydrophobicity and Superoleophilicity / 5.2:
Smart Surface with Reversible Superhydrophilicity and Superhydrophobicity / 5.3:
Conclusion and Prospect / Chapter 6:
Super-Lattice Surface Structure (Stable and Metastable Binary Cooperative Complementary Structure) / 6.1:
Optically Controllable Superconducting System (Superconducting/Normal-conducting Phase Binary Cooperative Complimentary Structure) / 6.2:
Chiroptical Switch (Chiral/Achiral Binary Cooperative Complementary Structure) / 6.3:
Novel Mesoporous Structure (Crystalline/Amorphous Phase Binary Cooperative Complementary Structure) / 6.4:
Interface of the Engineered Magnetism (Ferromagnetic/Antiferromagnetic Binary Cooperative Complementary Structure) / 6.5:
Ionic/Nonionic Conductor Binary Cooperative Complementary Structure / 6.6:
Concave/Convex Periodic Binary Cooperative Complementary Structure / 6.7:
Organic/Inorganic Binary Cooperative Complementary Structure / 6.8:
Reference
Index
Preface
About the Authors
Summary of Biomimetic Smart Nanoscale Interfacial Materials / Chapter 1:
9.

図書

図書
edited by Challa S.S.R. Kumar
出版情報: Weinheim : Wiley-VCH, c2010  xix, 431 p. ; 25 cm
シリーズ名: Nanomaterials for the life sciences / edited by Challa S.S.R. Kumar ; v. 5
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Contributors
Polymer Thin Films for Biomedical Applications / Venkat K. Vendra ; Lin Wu ; Sitaraman Krishnan1:
Introduction / 1.1:
Biocompatible Coatings / 1.2:
Protein-Repellant Coatings / 1.2.1:
Pegylated Thin Films / 1.2.1.1:
Non-Pegylated Hydrophilic Thin Films / 1.2.1.2:
Thin Films of Hyperbranched Polymers / 1.2.1.3:
Multilayer Thin Films / 1.2.1.4:
Antithrombogenic Coatings / 1.2.2:
Surface Chemistry and Blood Compatibility / 1.2.2.1:
Membrane-Mimetic Thin Films / 1.2.2.2:
Heparin-Mimetic Thin Films / 1.2.2.3:
Clot-Lyzing Thin Films / 1.2.2.4:
Polyelectrolyte Multilayer Thin Films / 1.2.2.5:
Polyurethane Coatings / 1.2.2.6:
Vapor-Deposited Thin Films / 1.2.2.7:
Antimicrobial Coatings / 1.2.3:
Cationic Polymers / 1.2.3.1:
Nanocomposite Polymer Thin Films Incorporating Inorganic Biocides / 1.2.3.2:
Antibiotic-Conjugated Polymer Thin Films / 1.2.3.3:
Biomimetic Antibacterial Coatings / 1.2.3.4:
Thin Films Resistant to the Adhesion of Viable Bacteria" / 1.2.3.5:
Coatings for Tissue Engineering Substrates / 1.3:
Zwitterionic Thin Films / 1.3.1:
Polysaccharide-Based Thin Films / 1.3.3:
Temperature-Responsive Polymer Coatings / 1.3.6:
Electroactive Thin Films / 1.3.8:
Other Functional Polymer Coatings / 1.3.9:
Multilayer Thin Films for Cell Encapsulation / 1.3.10:
Patterned Thin Films / 1.3.11:
Polymer Thin Films for Drug Delivery / 1.4:
Polymer Thin Films for Gene Delivery / 1.5:
Conclusions / 1.6:
References
Biofunctionalization of Polymeric Thin Films and Surfaces / Holger Schönherr2:
Introduction: The Case of Biofunctionalized Surfaces and Interfaces / 2.1:
Polymer-Based Biointerfaces / 2.2:
Requirements for Biofunctionalized Polymer Surfaces / 2.2.1:
Surface Modification Using Functional Polymers and Polymer-Based Approaches / 2.2.2:
Grafting of Polymers to Surfaces / 2.2.2.1:
Polymer Brushes by Surface-Initiated Polymerization / 2.2.2.2:
Physisorbed Multifunctional Polymers / 2.2.2.3:
Multipotent Covalent Coatings / 2.2.2.4:
Plasma Polymerization and Chemical Vapor Deposition (CVD) Approaches / 2.2.2.5:
Surface Modification of Polymer Surfaces, and Selected Examples / 2.2.3:
Coupling and Bioconjugation Strategies / 2.2.3.1:
Interaction with Cells / 2.2.3.2:
Patterned Polymeric Thin Films in Biosensor Applications / 2.2.3.3:
Summary and Future Perspectives / 2.3:
Stimuli-Responsive Polymer Nanocoatings / Ana L. Cordeiro3:
Stimuli-Responsive Polymers / 3.1:
Polymers Responsive to Temperature / 3.2.1:
Polymers Responsive to pH / 3.2.2:
Dual Responsive/Multiresponsive Polymers / 3.2.3:
Intelligent Bioconjugates / 3.2.4:
Responsive Biopolymers / 3.2.5:
Polymer Films and Interfacial Analysis / 3.3:
Applications / 3.4:
Release Matrices / 3.4.1:
Cell Sheet Engineering / 3.4.2:
Biofilm Control / 3.4.3:
Cell Sorting / 3.4.4:
Stimuli-Modulated Membranes / 3.4.5:
Chromatography / 3.4.6:
Microfluidics and Laboratory-on-a-Chip / 3.4.7:
Acknowledgments / 3.5:
Ceramic Nanocoatings and Their Applications in the Life Sciences / Eng San Thian4:
Magnetron Sputtering / 4.1:
Physical and Chemical Properties of SiHA Coatings / 4.3:
Biological Properties of SiHA Coatings / 4.4:
In Vitro Acellular Testing / 4.4.1:
In Vitro Cellular Testing / 4.4.2:
Future Perspectives / 4.5:
Gold Nanofilrns: Synthesis, Characterization, and Potential Biomedical Applications / Shiho Tokonami ; Hiroshi Shiigi ; Tsutomu Nagaoka4.6:
Preparation of Various AuNPs / 5.1:
Functionalization of AuNPs and their Applications through Aggregation / 5.3:
AuNP Assemblies and Arrays / 5.4:
AuNP Assemblies Structured on Substrates / 5.4.1:
AuNP Assembly on Biotemplates / 5.4.2:
AuNP Arrays for Gas Sensing / 5.4.3:
AuNP Arrays for Biosensing / 5.4.4:
Thin Films on Titania, and Their Applications in the Life Sciences / Izabella Brand ; Martina Nullmeier5.5:
Titanium in Contact with a Biomaterial / 6.1:
Lipid Bilayers at the Titania Surface / 6.3:
Formation of Lipid Bilayers on the Titania Surface / 6.3.1:
Spreading of Vesicles on a TiO2 Surface: Comparison to a SiO2 Surface / 6.3.1.1:
Interactions: lipid Molecule-Titania Surface / 6.3.2:
Structure and Conformation of lipid Molecules in the Bilayer on the Titania Surface / 6.3.3:
Structure of Phosphatidylcholine on the Titania Surface / 6.3.3.1:
Characteristics of Extracellular Matrix Proteins on the Titania Surface / 6.4:
Collagen Adsorption on Titania Surfaces / 6.4.1:
Morphology of Collagen Adsorbed on an Oxidized Titanium Surface / 6.4.1.1:
Adsorption of Collagen on a Hydroxylated Titania Surface / 6.4.1.2:
Morphology and Structure of Collagen Adsorbed on a Calcified Titania Surface / 6.4.1.3:
Structure of Collagen on the Titania Surface: Theoretical Predictions / 6.4.1.4:
Fibronectin Adsorption on the Titania Surface / 6.4.2:
Morphology of Fibronectin Adsorbed on the Titania Surface / 6.4.2.1:
Fibronectin-Titania Interactions / 6.4.2.2:
Structure of Fibronectin Adsorbed onto the Titania Surface / 6.4.2.3:
Atomic-Scale Picture of Fibronectin Adsorbed on the Titania Surface: Theoretical Predictions / 6.4.2.4:
Preparation, Characterization, and Potential Biomedical Applications of Nanostructured Zirconia Coatings and Films / Xuanyong Liu ; Ying Xu ; Paul K. Chu6.4.2.5:
Preparation and Characterization of Nano-ZrO2 Films / 7.1:
Cathodic Arc Plasma Deposition / 7.2.1:
Plasma Spraying / 7.2.2:
Sol-Gel Methods / 7.2.3:
Electrochemical Deposition / 7.2.4:
Anodic Oxidation and Micro-Arc Oxidation / 7.2.5:
Bioactivity of Nano-ZrO2 Coatings and Films / 7.2.6:
Cell Behavior on Nano-ZrO2 Coatings and Films / 7.4:
Applications of Nano-ZrO2 Films to Biosensors / 7.5:
Free-Standing Nanostructured Thin Films / Izumi Ichinose8:
The Roles of Free-Standing Thin Films / 8.1:
Films as Partitions / 8.2.1:
Nanoseparation Membranes / 8.2.2:
Biomembranes / 8.2.3:
Free-Standing Thin Films with Bilayer Structures / 8.3:
Supported Lipid Bilayers and "Black Lipid Membranes" / 8.3.1:
Foam Films and Newton Black Films / 8.3.2:
Dried Foam Film / 8.3.3:
Foam Films of Ionic Liquids / 8-3.4:
Free-Standing Thin Films Prepared with Solid Surfaces / 8.4:
Free-Standing Thin Films of Nanoparticles / 8.5:
Nanofibrous Free-Standing Thin Films / 8.6:
Electrospinning and Filtration Methods / 8.6.1:
Metal Hydroxide Nanostrands / 8.6.2:
Nanofibrous Composite Films / 8:6.3:
Dip-Pen Nanolithography of Nanostructured Thin Films for the Life Sciences / Euiseok Kim ; Yuan-Shin Lee ; Ravi Aggarwal ; Roger J. Narayan8.6.4:
Dip-Pen Nanolithography / 9.1:
Important Parameters / 9.2.1:
Applications of DPN / 9.2.2:
Direct and Indirect Patterning of Biomaterials Using DPN / 9.3:
Background / 9.3.1:
Direct Patterning / 9.3.2:
Indirect Patterning / 9.3.3:
Applications of DPN for Medical Diagnostics and Drug Development / 9.4:
General Methods of Nano/Micro Bioarray Patterning / 9.4.1:
Virus Array Generation and Detection Tests / 9.4.2:
Diagnosis of Allergic Disease / 9.4.3:
Cancer Detection Using Nano/Micro Protein Arrays / 9.4.4:
Drug Development / 9.4.5:
Lab-on-a-Chip Using Microarrays / 9.4.6:
Summary and Future Directions / 9.5:
Understanding and Controlling Wetting Phenomena at the Micro-and Nanoscales / Zuankai Wang ; Nikhil Koratkar10:
Wetting and Contact Angle / 10.1:
Design and Creation of Superhydrophobic Surfaces / 10.3:
Design Parameters for a Robust Composite Interface / 10.3.1:
Creation of Superhydrophobic Surfaces / 10.3.2:
Superhydrophobic Surfaces with Unitary Roughness / 10.3.3:
Superhydrophobic Surfaces with Two-Scale Roughness / 10.3.4:
Superhydrophobic Surfaces with Reentrant Structure / 10.3.5:
Impact Dynamics of Water on Superhydrophobic Surfaces / 10.4:
Impact Dynamics on Nanostructured MWNT Surfaces / 10.4.1:
Impact Dynamics on Micropattemed Surfaces / 10.4.2:
Electrically Controlled Wettability Switching on Superhydrophobic Surfaces / 10.5:
Reversible Control of Wettability Using Electrostatic Methods / 10.5.1:
Electrowetting on Superhydrophobic Surfaces / 10.5.2:
Novel Strategies for Reversible Electrowetting on Rough Surfaces / 10.5.3:
Electrochemically Controlled Wetting of Superhydrophobic Surfaces / 10.6:
Polarity-Dependent Wetting of Nanotube Membranes / 10.6.1:
Mechanism of Polarity-Dependent Wetting and Transport / 10.6.2:
Potential Applications of Electrochemically Controlled Wetting and Transport / 10.6.3:
Imaging of Thin Films, and Its Application in the Life Sciences / Silvia Mittler10.7:
Thin Film Preparation Methods / 11.1:
Dip-Coating / 11.2.1:
Spin-Coating / 11.2.2:
Langmuir-Blodgett (LB) Films
Self-Assembled Monolayers / 11.2.4:
Layer-by-Layer Assembly / 11.2.5:
Polymer Brushes: The "Grafting-From" Approach / 11.2.6:
Structuring: The Micro- and Nanostructuring of Thin Films / 11.3:
Photolithography / 11.3.1:
Ion Lithography and FIB Lithography / 11.3.2:
Electron lithography / 11.3.3:
Micro-Contact Printing and Nanoimprinting (NIL) / 11.3.4:
Near-Field Scanning Methods / 11.3.5:
Other Methods / 11.3.6:
Imaging Technologies / 11.4:
The Concept of Total Internal Reflection / 11.4.1:
The Concept of Waveguiding / 11.4.2:
Brewster Angle Microscopy (BAM) / 11.4.3:
Resonant Evanescent Methods / 11.4.4:
Surface Plasmon Resonance Microscopy / 11.4.4.1:
Waveguide Resonance Microscopy / 11.4.4.2:
Surface Plasmon Enhanced Fluorescence Microscopy / 11.4.4.3:
Waveguide Resonance Microscopy with Electro-Optical Response / 11.4.4.4:
Nonresonant Evanescent Methods / 11.4.5:
Total Internal Reflection Fluorescence (TIRF) Microscopy / 11.4.5.1:
Waveguide Scattering Microscopy / 11.4.5.2:
Waveguide Evanescent Field Fluorescence Microscopy (WEFFM) / 11.4.5.3:
Confocal Raman Microscopy and One- and Two-Photon Fluorescence Confocal Microscopy / 11.4.5.4:
Application of Thin Films in the Life Sciences / 11.5:
Sensors / 11.5.1:
Surface Functionalization for Biocompatibility / 11.5.2:
Drug Delivery / 11.5.3:
Bioreactors / 11.5.4:
Cell-Surface Mimicking / 11.5.5:
Summary / 11.6:
Structural Characterization Techniques of Molecular Aggregates, Polymer, and Nanoparticle Films / Takeshi Hasegawa12:
Characterization of Ultrathin Films of Soft Materials / 12.1:
X-Ray Diffraction Analysis / 12.2.1:
Infrared Transmission and Reflection Spectroscopy / 12.2.2:
Multiple-Angle Incidence Resolution Spectrometry (MAIRS) / 12.2.3:
Theoretical Background of MAIRS / 12.2.3.1:
Molecular Orientation Analysis in Polymer Thin Films by IR-MAIRS / 12.2.3.2:
Analysis of Metal Thin Films / 12.2.3.3:
Index
Preface
List of Contributors
Polymer Thin Films for Biomedical Applications / Venkat K. Vendra ; Lin Wu ; Sitaraman Krishnan1:
10.

図書

図書
edited by Ali Eftekhari
出版情報: West Sussex, U.K. : Wiley, 2010  xxiii, 776 p., [4]leaves of plates ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Foreword
List of Contributors
History of Conductive Polymers / J. Campbell ScottPart 1:
Introduction / 1.1:
Archeology and prehistory / 1.2:
The dawn of the modern era / 1.3:
The materials revolution / 1.4:
Concluding remarks / 1.5:
Acknowledgments
References
Polyaniline nanostructures / Gordana Ciric-Marjanovic2:
Preparation / 2.1:
Structure and Properties / 2.3:
Processing and Applications / 2.4:
Conclusions and Outlook / 2.5:
Nanoscale Inhomogeneity of Conducting Polymer Based Materials / Alain Pailleret ; Oleg Semenikhin3:
Introduction: Inhomogeneity and Nanostructured Materials / 3.1:
Direct Local Measurements of Nanoscale Inhomogeneity of Conducting and Semiconducting Polymers / 3.2:
In-situ Studies of Conducting and Semiconducting Polymers: / 3.3:
The Origin of the Nanoscale Inhomogeneity of Conducting and Semiconducting Polymers / 3.4:
Nanostructured Conductive Polymers by Electrospinning / Ioannis S. ChronakisPart 2:
Introduction to Electrospinning Technology / 4.1:
Electrospinning Processing / 4.2:
Electrospinning Processing Parameters - Control of the Nanofiber Morphology / 4.3:
Nanostructured conductive polymers by electrospinning / 4.4:
Application of Electrospun Nanostructrured Conductive Polymers / 4.5:
Composites based on conducting polymers and carbon nanotubes / M.Baibarac ; I.Baltog ; S. Lefrant5:
Carbon Nanotubes / 5.1:
Synthesis of composites based on conducting polymers and carbon nanotubes / 5.3:
Vibrational properties of composites based on conducting polymers and carbon nanotubes / 5.4:
Conclusions / 5.5:
Inorganic-Based Nanocomposites of Conductive Polymers / Rabin Bissessur6:
FeOCl / 6.1:
Layered phosphates and phosphonates / 6.3:
Layered Rutiles / 6.7:
Layered perovskites / 6.8:
Layered Titanates / 6.9:
Graphite Oxide / 6.10:
Acknowledgements / 6.11:
Metallic-based Nanocomposites of Conductive Polymers / Vessela Tsakova7:
Oxidative Polymerization Combined with Metal Ions Reduction (One-pot Synthesis) / 7.1:
Nanocomposite Formation by Means of Pre-synthesized Metal Nanoparticles / 7.3:
Metal Electrodeposition in Pre-synthesized CPs / 7.4:
Chemical Reduction of Metal Ions in Pre-polymerized CP Suspensions or Layers / 7.5:
Metallic Based Conducting Polymer Composites for Electrocatalytic and Electroanalytic Applications / 7.6:
List of Acronyms
Spectroscopy of Nanostructured Conducting Polymers / Gustavo M. do Nascimento ; Marcelo A. de Souza8:
Synthetic Metals / 8.1:
Nanostructured Conducting Polymers / 8.2:
Spectroscopic Techniques / 8.3:
Concluding Remarks / 8.4:
Atomic Force Microscopy Study of Conductive Polymers / Edgar Ap. Sanches ; Osvaldo N. Oliveira Jr ; Fabio de Lima Leite9:
AFM Fundamentals and Applications / 9.1:
Single Conducting Polymer Nanowires / Yixuan Chen ; Yi Luo9.3:
Fabrication of Single Conducting Polymer Nanowires (CPNWs) / 10.1:
Transport Properties and Electrical Characterization / 10.3:
Application of Single Conducting Polymer Nanowires (CPNWs) / 10.4:
Summary and Outlook / 10.5:
Conductive Polymer Micro and Nano Containers / Jiyong Huang ; Zhixiang Wei11:
Structures of Micro- and Nano- Containers / 11.1:
Preparation Method and Formation Mechanism / 11.2:
Properties and Applications of Micro- and Nano- Containers / 11.3:
Magnetic and Electron Transport Behaviors of Conductive Polymer Nanocomposites / Zhanhu Guo ; Suying Wei ; David Cocke ; Di Zhang11.4:
Magnetic Polymer Nanocomposite Preparation / 12.1:
Physicochemical Property Characterization / 12.3:
Microstructure of the Conductive Polymer Nanocomposites / 12.4:
Interaction between the Nanoparticles and Conductive Polymer Matrix / 12.5:
Magnetic Properties of Conductive Polymer Nanocomposites / 12.6:
Electron Transport in Conductive Polymer Nanocomposites / 12.7:
Giant Magnetoresistance in Conductive Polymer Nanocomposites / 12.8:
Summary / 12.9:
Charge Transfer and Charge Separation in Conjugated Polymer Solar Cells / Ian A. Howard ; Neil C. Greenham ; Agnese Abrusci ; Richard H. Friend ; Sebastian Westenhoff13:
Charge Transfer in Conjugated Polymers / 13.1:
Charge Generation and Recombination in Organic Solar Cells with High Open-Circuit Voltage / 13.3:
Nanostructured conducting polymers for (electro)chemical sensors / Anthony J. Killard13.4:
Nanowires and Nanotubes / 14.1:
Nanogaps and nanojunctions / 14.3:
Nanofibres and nanocables / 14.4:
Nanofilms / 14.5:
Metallic nanoparticle/conducting polymer nanocomposites / 14.6:
Metal oxide nanoparticles/conducting polymer nanocomposites / 14.7:
Carbon Nanotube nanocomposites / 14.8:
Nanoparticles / 14.9:
Nanoporous templates / 14.10:
Application summaries / 14.11:
Nanostructural Aspects of Conducting Polymer Actuators / Paul A. Kilmartin ; Jadranka Travas-Sejdic14.12:
Mechanism and modes of actuation / 15.1:
Modelling mechanical performance and developing device applications / 15.3:
Effect of morphology and nanostructure upon actuation / 15.4:
Solvent and ion size effects to achieve higher actuation / 15.5:
Nanostructured composite actuators / 15.6:
Prospects for nanostructured conducting polymer actuators / 15.7:
Electroactive Conducting Polymers for the Protection of Metals against Corrosion: from Micro- to Nanostructured Films / Pierre Camille Lacaze ; Jalal Ghilane ; Hyacinthe Randriamahazaka ; Jean-Christophe Lacroix16:
Protection Mechanisms Induced by Conducting Polymers / 16.1:
Conducting Polymer Coating Techniques for Usual Oxidizable Metals and Performances of Conducting Polymer-Based Micron-Thick Films for Protection against Corrosion / 16.3:
Nanostructured Conducting Polymer Coatings and Anticorrosion Protection / 16.4:
Acknowledgement / 16.5:
Electrocatalysis by Nanostructured Conducting Polymers / Shaolin Mu ; Ya Zhang17:
Electrochemical synthetic techniques of nanostructured conducting polymers / 17.1:
Electrocatalysis at nanostructured conducting polymer electrodes / 17.3:
Conclusion / 17.4:
Nanostructured Conductive Polymers as Biomaterials / Rylie A. Green ; Sungchul Baek ; Nigel H. Lovell ; Laura A. Poole-Warren18:
Biomedical applications for conductive polymers / 18.1:
Polymer design considerations / 18.3:
Fabrication of nanostructured conductive polymers / 18.4:
Polymer characterisation / 18.5:
Interfacing with neural tissue / 18.6:
Nanocomposites of Polymers Made Conductive by Nanofillers / Haiping Hong ; Dustin Thomas ; Mark Horton ; Yijiang Lu ; Jing Li ; Pauline Smith ; Walter Roy18.7:
Experimental / 19.1:
Results and discussion / 19.3:
Index / 19.4:
Preface
Foreword
List of Contributors
11.

図書

図書
edited by Knut Rurack and Ramón Martínez-Máñez
出版情報: Hoboken, N.J. : John Wiley & Sons, c2010  xxxiv, 766 p., [16] p. of plates ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Editors and Contributors
Abbreviations
Hybrid (Nano)Materials Meet Supramolecular Chemistry: A Brief Introduction to Basic Terms and Concepts / Knut Rurack ; Ramón Martínez-Máñez1:
Supramolecular Chemistry at the Mesoscale / Katsuhiko Ariga ; Gary J. Richards ; Jonathan P. Hill ; Ajayan Vinu ; Toshiyuki Mori2:
Organic-Inorganic Hybrid Nanomaterials / Part 1:
Silica-Based Mesoporous Organic-Inorganic Hybrid Material / Frank Hoffmann ; Michael Fröba3:
Modified Gold Nanoparticles and Surfaces / Paolo Pengo ; Lucia Pasquato4:
Organically Functionalized Semiconductor Nanocrystals: Synthesis, Properties and System Design for Optoelectronic Applications / Peter Reiss ; Julia de Girolamo ; Adam Pron5:
Functionalized Carbon Nanotubes for Bioapplications / Lingrong Gu ; Fushen Lu ; Pengju G. Luo ; Haifang Wang ; Mohammed J. Meziani ; Ya-Ping Sun6:
Metal-Organic Frameworks (MOFs) and Coordination Polymers / Shin-Ichiro Noro ; Susumu Kitagawa7:
Improvement-of Signaling and Sensing by Organization on Surfaces / Part 2:
Nanoparticle and Biomolecular-Nanoparticle Hybrid Supramolecular Complexes for Electrochemical Signaling / Ronen Polsky ; Jason C. Harper ; Susan M. Brozik8:
Modified Nanoparticles as Nanoelectrocatalysts and Amplifying Sensors / Shaojun Guo ; Erkang Wang ; Xiurong Yang9:
Signal Generation with Gold Nanoparticles: Photophyskal Properties for Sensor and Imaging Applications / Qingshan Wei ; Alexander Wei10:
Optical Signaling with Silica Nanoparticles / Fabrizio Mancin ; Paolo Tecilla ; Umberto Tonellato11:
Organically Modified Quantum Dots in Chemical and Biochemical Analysis / María Teresa Fernández Argüelles ; José M. Costa-Fernández ; Rosario Pereiro ; Alfredo Sanz-Medel12:
Control of Supramolecular Nanofabrication, Motion, and Morphology / Part 3:
Chemically Directed Self-Assembly of Nanoparticle Structures on Surfaces / Xing Yi Ling ; David N. Reinhoudt ; Jurriaan Huskens13:
Immobilization and Patterning of Biomolecules on Surfaces / Dorota I. Rozkiewicz ; Ban Jan Ravoo14:
Switchable Host-Guest Chemistry on Surfaces / Jilie Kong ; Chunming Jiang ; Li Mu15:
Nanogated Mesoporous Silica Materials / Igor I. Slowing ; Brian G. Trewyn ; Victor S.-Y. Lin16:
Building Molecular Machines on Surfaces / Alberto Credi ; Serena Silvi ; Margherita Venturi17:
Control of Morphology in Mesoporous and Mesostructured Hybrid Materials / Darren R. Dunphy ; Bernd Smarsly ; C. Jeffrey Brinker18:
Biomimetic Chemistry / Part 4:
Biomimetically Inspired Signaling / Fléix Sancenón ; Ana B. Descalzo19:
Imprinted Functionalized Silica / Maryanne M. Collinson20:
Bioinspired Block Copolymer-Based Hybrid Materials / Marleen Kamperman ; Ulrich Wiesner21:
Interfacial Chemistry, Multifunctionality, and Interdisciplinarity / Part 5:
Emerging Concepts in Interfacial Chemistry of Hybrid Materials: Nanocontainer-Based Self-Healing Coatings / Dmitry G. Shchukin ; Daria V. Andreeva ; Katja Skorb ; Helmuth Möhwald22:
Molecular Schizophrenics: Switchable Materials with Multiple Functions / Robert Byrne ; Dermot Diamond23:
Hybrid Nanomaterials Research: Is It Really Interdisciplinary? / Ismael Rafols ; Martin Meyer ; Jae-Hwan Park24:
Supramolecular Chemistry Meets Hybrid (Nano)Materials: A Brief Look Ahead / 25:
Appendix 1
Index
Preface
Editors and Contributors
Abbreviations
12.

図書

図書
edited by Michael J. O'Connell
出版情報: Boca Raton : Taylor & Francis, 2006  319 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
The element carbon / Frank Hennrich ; Candace Chan ; Valerie Moore ; Marco Rolandi ; Mike O'ConnellChapter 1:
Synthesis of carbon nanotubes / David MannChapter 2:
Carbon nanotube peapod materials / Satishkumar B. Chikkannanavar ; Brian W. Smith ; David E. LuzziChapter 3:
Carbon nanotube electronics and devices / Marcus FreitagChapter 4:
Magnetic properties / Junichiro Kono ; Stephan RocheChapter 5:
Raman spectroscopy of single-walled carbon nanotubes: probing electronic and chemical behavior / Stephen K. Doorn ; Daniel Heller ; Monica Usrey ; Paul Barone ; Michael S. StranoChapter 6:
Electromechanical properties and applications of carbon nanotubes / Randal J. GrowChapter 7:
Carbon nanotube-enabled materials / Han Gi Chae ; Jing Liu ; Satish KumarChapter 8:
Functionalized carbon nanotubes in composites / Christopher A. Dyke ; James M. TourChapter 9:
Carbon nanotube tips for scanning probe microscopy / C. Patrick CollierChapter 10:
Index
The element carbon / Frank Hennrich ; Candace Chan ; Valerie Moore ; Marco Rolandi ; Mike O'ConnellChapter 1:
Synthesis of carbon nanotubes / David MannChapter 2:
Carbon nanotube peapod materials / Satishkumar B. Chikkannanavar ; Brian W. Smith ; David E. LuzziChapter 3:
13.

図書

図書
Lukas Novotny, Bert Hecht
出版情報: Cambridge : Cambridge University Press, 2006  xvii, 539 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface / 1:
Introduction
Theoretical foundations / 2:
Propagation and focusing of optical fields / 3:
Nano-optics in a nutshell / 4:
Spatial resolution and position accuracy
Nanoscale optical microscopy / 1.2:
Historical survey
Near-field optical probes / 6:
Scope of the book / 7:
Probe-sample distance control
References / 8:
Light emission and optical interaction in nanoscale environments
Quantum emitters / 9:
Dipole emission near planar interfaces / 10:
Macroscopic electrodynamics / 11:
Photonic crystals and resonators
Surface plasmons / 2.2:
Wave equations
Forces in confined fields / 13:
Constitutive relations / 14:
Fluctuation-induced phenomena
Theoretical methods in nano-optics / 2.4:
Spectral representation of time-dependent fields
Appendices
Index / 2.5:
Time-harmonic fields
Complex dielectric constant / 2.6:
Piecewise homogeneous media / 2.7:
Boundary conditions / 2.8:
Fresnel reflection and transmission coefficients / 2.8.1:
Conservation of energy / 2.9:
Dyadic Green's functions / 2.10:
Mathematical basis of Green's functions / 2.10.1:
Derivation of the Green's function for the electric field / 2.10.2:
Time-dependent Green's functions / 2.10.3:
Evanescent fields / 2.11:
Energy transport by evanescent waves / 2.11.1:
Frustrated total internal reflection / 2.11.2:
Angular spectrum representation of optical fields / 2.12:
Angular spectrum representation of the dipole field / 2.12.1:
Problems
Field propagators / 3.1:
Paraxial approximation of optical fields / 3.2:
Gaussian laser beams / 3.2.1:
Higher-order laser modes / 3.2.2:
Longitudinal fields in the focal region / 3.2.3:
Polarized electric and polarized magnetic fields / 3.3:
Far-fields in the angular spectrum representation / 3.4:
Focusing of fields / 3.5:
Focal fields / 3.6:
Focusing of higher-order laser modes / 3.7:
Limit of weak focusing / 3.8:
Focusing near planar interfaces / 3.9:
Reflected image of a strongly focused spot / 3.10:
The point-spread function / 4.1:
The resolution limit(s) / 4.2:
Increasing resolution through selective excitation / 4.2.1:
Axial resolution / 4.2.2:
Resolution enhancement through saturation / 4.2.3:
Principles of confocal microscopy / 4.3:
Axial resolution in multiphoton microscopy / 4.4:
Position accuracy / 4.5:
Theoretical background / 4.5.1:
Estimating the uncertainties of fit parameters / 4.5.2:
Principles of near-field optical microscopy / 4.6:
Information transfer from near-field to far-field / 4.6.1:
Far-field illumination and detection / 5.1:
Confocal microscopy / 5.1.1:
Near-field illumination and far-field detection / 5.2:
Aperture scanning near-field optical microscopy / 5.2.1:
Field-enhanced scanning near-field optical microscopy / 5.2.2:
Far-field illumination and near-field detection / 5.3:
Scanning tunneling optical microscopy / 5.3.1:
Collection mode near-field optical microscopy / 5.3.2:
Near-field illumination and near-field detection / 5.4:
Other configurations: energy-transfer microscopy / 5.5:
Conclusion / 5.6:
Dielectric probes / 6.1:
Tapered optical fibers / 6.1.1:
Tetrahedral tips / 6.1.2:
Light propagation in a conical dielectric probe / 6.2:
Aperture probes / 6.3:
Power transmission through aperture probes / 6.3.1:
Field distribution near small apertures / 6.3.2:
Near-field distribution of aperture probes / 6.3.3:
Enhancement of transmission and directionality / 6.3.4:
Fabrication of aperture probes / 6.4:
Aperture formation by focused ion beam milling / 6.4.1:
Electrochemical opening and closing of apertures / 6.4.2:
Aperture punching / 6.4.3:
Microfabricated probes / 6.4.4:
Optical antennas: tips, scatterers, and bowties / 6.5:
Solid metal tips / 6.5.1:
Particle-plasmon probes / 6.5.2:
Bowtie antenna probes / 6.5.3:
Shear-force methods / 6.6:
Optical fibers as resonating beams / 7.1.1:
Tuning-fork sensors / 7.1.2:
The effective harmonic oscillator model / 7.1.3:
Response time / 7.1.4:
Equivalent electric circuit / 7.1.5:
Normal force methods / 7.2:
Tuning fork in tapping mode / 7.2.1:
Bent fiber probes / 7.2.2:
Topographic artifacts / 7.3:
Phenomenological theory of artifacts / 7.3.1:
Example of near-field artifacts / 7.3.2:
Discussion / 7.3.3:
Light emission and optical interactions in nanoscale environments
The multipole expansion / 8.1:
The classical particle-field Hamiltonian / 8.2:
Multipole expansion of the interaction Hamiltonian / 8.2.1:
The radiating electric dipole / 8.3:
Electric dipole fields in a homogeneous space / 8.3.1:
Dipole radiation / 8.3.2:
Rate of energy dissipation in inhomogeneous environments / 8.3.3:
Radiation reaction / 8.3.4:
Spontaneous decay / 8.4:
QED of spontaneous decay / 8.4.1:
Spontaneous decay and Green's dyadics / 8.4.2:
Local density of states / 8.4.3:
Classical lifetimes and decay rates / 8.5:
Homogeneous environment / 8.5.1:
Inhomogeneous environment / 8.5.2:
Frequency shifts / 8.5.3:
Quantum yield / 8.5.4:
Dipole-dipole interactions and energy transfer / 8.6:
Multipole expansion of the Coulombic interaction / 8.6.1:
Energy transfer between two particles / 8.6.2:
Delocalized excitations (strong coupling) / 8.7:
Entanglement / 8.7.1:
Fluorescent molecules / 9.1:
Excitation / 9.1.1:
Relaxation / 9.1.2:
Semiconductor quantum dots / 9.2:
Surface passivation / 9.2.1:
Coherent control of excitons / 9.2.2:
The absorption cross-section / 9.3:
Single-photon emission by three-level systems / 9.4:
Steady-state analysis / 9.4.1:
Time-dependent analysis / 9.4.2:
Single molecules as probes for localized fields / 9.5:
Field distribution in a laser focus / 9.5.1:
Probing strongly localized fields / 9.5.2:
Allowed and forbidden light / 9.6:
Angular spectrum representation of the dyadic Green's function / 10.2:
Decomposition of the dyadic Green's function / 10.3:
Dyadic Green's functions for the reflected and transmitted fields / 10.4:
Spontaneous decay rates near planar interfaces / 10.5:
Far-fields / 10.6:
Radiation patterns / 10.7:
Where is the radiation going? / 10.8:
Magnetic dipoles / 10.9:
Image dipole approximation / 10.10:
Vertical dipole / 10.10.1:
Horizontal dipole / 10.10.2:
Including retardation / 10.10.3:
Photonic crystals / 11.1:
The photonic bandgap / 11.1.1:
Defects in photonic crystals / 11.1.2:
Optical microcavities / 11.2:
Optical properties of noble metals / 12.1:
Drude-Sommerfeld theory / 12.1.1:
Interband transitions / 12.1.2:
Surface plasmon polaritons at plane interfaces / 12.2:
Properties of surface plasmon polaritons / 12.2.1:
Excitation of surface plasmon polaritons / 12.2.2:
Surface plasmon sensors / 12.2.3:
Surface plasmons in nano-optics / 12.3:
Plasmons supported by wires and particles / 12.3.1:
Plasmon resonances of more complex structures / 12.3.2:
Surface-enhanced Raman scattering / 12.3.3:
Maxwell's stress tensor / 12.4:
Radiation pressure / 13.2:
The dipole approximation / 13.3:
Time-averaged force / 13.3.1:
Monochromatic fields / 13.3.2:
Saturation behavior for near-resonance excitation / 13.3.3:
Beyond the dipole approximation / 13.3.4:
Optical tweezers / 13.4:
Angular momentum and torque / 13.5:
Forces in optical near-fields / 13.6:
Fluctuation-induced interactions / 13.7:
The fluctuation-dissipation theorem / 14.1:
The system response function / 14.1.1:
Johnson noise / 14.1.2:
Dissipation due to fluctuating external fields / 14.1.3:
Normal and antinormal ordering / 14.1.4:
Emission by fluctuating sources / 14.2:
Blackbody radiation / 14.2.1:
Coherence, spectral shifts and heat transfer / 14.2.2:
Fluctuation-induced forces / 14.3:
The Casimir-Polder potential / 14.3.1:
Electromagnetic friction / 14.3.2:
The multiple multipole method / 14.4:
Volume integral methods / 15.2:
The volume integral equation / 15.2.1:
The method of moments (MOM) / 15.2.2:
The coupled dipole method (CDM) / 15.2.3:
Equivalence of the MOM and the CDM / 15.2.4:
Effective polarizability / 15.3:
The total Green's function / 15.4:
Conclusion and outlook / 15.5:
Semianalytical derivation of the atomic polarizability / Appendix A:
Steady-state polarizability for weak excitation fields / A.1:
Near-resonance excitation in absence of damping / A.2:
Near-resonance excitation with damping / A.3:
Spontaneous emission in the weak coupling regime / Appendix B:
Weisskopf-Wigner theory / B.1:
Inhomogeneous environments / B.2:
Fields of a dipole near a layered substrate / Appendix C:
Vertical electric dipole / C.1:
Horizontal electric dipole / C.2:
Definition of the coefficients A[subscript j], B[subscript j], and C[subscript j] / C.3:
Far-field Green's functions / Appendix D:
Preface / 1:
Introduction
Theoretical foundations / 2:
14.

図書

図書
H. Hosono ... [et al.]
出版情報: Oxford : Elsevier, 2006  xvi, 458 p. ; 25 cm
所蔵情報: loading…
15.

図書

図書
edited by C.S.S.R. Kumar, J. Hormes, C. Leuschner
出版情報: Weinheim : Wiley-VCH, 2005  xxii, 420 p ; 25 cm
所蔵情報: loading…
16.

図書

図書
[volume editors,] S. Saito, A. Zettl
出版情報: Amsterdam : Elsevier, 2008  xiii, 215 p. ; 25 cm
シリーズ名: Contemporary concepts of condensed matter science
所蔵情報: loading…
目次情報: 続きを見る
List of Contributors
Series Preface
Volume Preface
Nanotubes: An Experimental Overview / A. Zettl1:
Quantum Theories for Carbon Nanotubes / S. Saito2:
The Electronic Properties of Carbon Nanotubes / P. G. Collins ; P. Avouris3:
Raman Spectroscopy of Carbon Nanotubes / M. S. Dresselhaus ; G. Dresselhaus ; R. Saito ; A. Jorio4:
Optical Spectroscopy of Single-Walled Carbon Nanotubes / R. Bruce Weisman5:
Structural Properties and Nanoelectromechanical Systems Applications / J. W. Seo ; L. Forro6:
Low-Energy Electronic Structure of Graphene and its Dirac Theory / E. J. Mele ; C. L. Kane7:
Author Index
Subject Index
List of Contributors
Series Preface
Volume Preface
17.

図書

図書
edited by Challa S. S. R. Kumar
出版情報: Weinheim : Wiley-VCH, c2006  xix, 408 p. ; 25 cm
シリーズ名: Nanotechnologies for the life sciences ; v. 2
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Contributors
DNA-based Nanomaterials / I:
Self-assembled DNA Nanotubes / Thom LaBean ; Sung Ha Park1:
Introduction / 1.1:
DNA Nanotubes Self-assembled from DX Tiles / 1.2:
3DAE-E DX Tile Nanotubes / 1.3:
DAE-O DX Tile Nanotubes / 1.4:
TX Tile Nanotubes / 1.5:
4 x 4 Tile Nanotubes / 1.6:
6HB Tile Nanotubes / 1.7:
Applications / 1.8:
Summary and Perspectives / 1.9:
References
Nucleic Acid Nanoparticles / Guy Zuber ; Benedicte Pons ; Andrew W. Fraley2:
The Chemical and Physical Properties of Therapeutic DNA / 2.1:
Preparation of Nucleic Acid Nanoparticles: Synthesis and Characterization / 2.3:
Rationale / 2.3.1:
Synthesis, Characterization and Optimization of Surfactants / 2.3.2:
Organization of the Surfactant-DNA Complexes / 2.3.3:
Quantification of the Stability of Surfactant-DNA Complexes / 2.3.4:
DNA Functionalization for Cell Recognition and Internalization / 2.4:
Strategies for Functionalization / 2.4.1:
Intercalation / 2.4.2:
Triple Helix Formation with Oligodeoxyribonucleotides / 2.4.3:
Peptide Nucleic Acids (PNAs) / 2.4.4:
Interactions of DNA with Fusion Proteins / 2.4.5:
Agents that Bind to the Minor Groove / 2.4.6:
DNA Nanoparticles: Sophistication for Cell Recognition and Internalization / 2.5:
Preparation of DNA Nanoparticles Enveloped with a Protective Coat and Cell Internalization Elements / 2.5.1:
Biomedical Application: Cell Targeting and Internalization Properties of Folate-PEG-coated Nanoparticles / 2.5.2:
Concluding Remarks / 2.6:
Lipoplexes / Sarah Weisman3:
DNA Lipoplexes / 3.1:
Composition / 3.2.1:
Nanostructure and Microstructure / 3.2.2:
Equilibrium Morphology / 3.2.2.1:
Nonequilibrium Morphology / 3.2.2.2:
Lipoplex Size / 3.2.2.3:
Lipofection Efficiency / 3.2.3:
In Vitro / 3.2.3.1:
In Vivo / 3.2.3.2:
ODN Lipoplexes / 3.3:
siRNA Lipoplexes / 3.4:
Acknowledgments
DNA-Chitosan Nanoparticles for Gene Therapy: Current Knowledge and Future Trends / Julio C. Fernandes ; Marcio Jose Tiera ; Francoise M. Winnik4:
Chitosan as a Carrier for Gene Therapy / 4.1:
Chitosan Chemistry / 4.2.1:
General Strategies for Chitosan Modification / 4.2.2:
Chitosan-DNA interactions: Transfection Efficacy of Unmodified Chitosan / 4.2.3:
Modified Chitosans: Strategies to Improve the Transfection Efficacy / 4.3:
The Effects of Charge Density/Solubility and Degree of Acetylation / 4.3.1:
Improving the Physicochemical Characteristics of the Nanoparticulate Systems: Solubility, Aggregation and RES Uptake / 4.3.2:
Targeting Mediated by Cell Surface Receptors / 4.3.3:
Hydrophobic Modification: Protecting the DNA and Improving the Internalization Process / 4.3.4:
Methods of Preparation of Chitosan Nanoparticles / 4.4:
Complex Coacervation / 4.4.1:
Crosslinking Methods / 4.4.2:
Chemical Crosslinking / 4.4.2.1:
Ionic Crosslinking or Ionic Gelation / 4.4.2.2:
Emulsion Crosslinking / 4.4.2.3:
Spray Drying / 4.4.2.4:
Other Methods / 4.4.2.5:
DNA Loading into Nano- and Microparticles of Chitosan / 4.5:
DNA Release and Release Kinetics / 4.6:
Preclinical Evidence of Chitosan-DNA Complex Efficacy / 4.7:
Potential Clinical Applications of Chitosan-DNA in Gene Therapy / 4.8:
Conclusion / 4.9:
Protein & Peptide-based Nanomaterials / II:
Plant Protein-based Nanoparticles / Anne-Marie Orecchioni ; Cecile Duclairoir ; Juan Manuel Irache ; Evelyne Nakache5:
Description of Plant Proteins / 5.1:
Pea Seed Proteins / 5.2.1:
Wheat Proteins / 5.2.2:
Preparation of Protein Nanoparticles / 5.3:
Preparation of Legumin and Vicilin Nanoparticles / 5.3.1:
Preparation of Gliadin Nanoparticles / 5.3.2:
Drug Encapsulation in Plant Protein Nanoparticles / 5.4:
RA Encapsulation in Gliadin Nanoparticles / 5.4.1:
VE Encapsulation in Gliadin Nanoparticles / 5.4.2:
Lipophilic, Hydrophilic or Amphiphilic Drug Encapsulation / 5.4.3:
Preparation of Ligand-Gliadin Nanoparticle Conjugates / 5.5:
Bioadhesive Properties of Gliadin Nanoparticles / 5.6:
Ex Vivo Studies with Gastrointestinal Mucosal Segments / 5.6.1:
In Vivo Studies with Laboratory Animals / 5.6.2:
Future Perspectives / 5.7:
Size Optimization / 5.7.1:
Immunization in Animals / 5.7.2:
Peptide Nanoparticles / Klaus Langer5.8:
Starting Materials for the Preparation of Nanoparticles / 6.1:
Preparation Methods / 6.3:
Nanoparticle Preparation by Emulsion Techniques / 6.3.1:
Emulsion Technique for the Preparation of Albumin-based Microspheres and Nanoparticles / 6.3.1.1:
Emulsion Technique for the Preparation of Gelatin-based Microspheres and Nanoparticles / 6.3.1.2:
Emulsion Technique for the Preparation of Casein-based Microspheres and Nanoparticles / 6.3.1.3:
Nanoparticle Preparation by Coacervation / 6.3.2:
Complex Coacervation Techniques for the Preparation of Nanoparticles / 6.3.2.1:
Simple Coacervation (Desolvation) Techniques for the Preparation of Nanoparticles / 6.3.2.2:
Basic Characterization Techniques for Peptide Nanoparticles / 6.4:
Drug Targeting with Nanoparticles / 6.5:
Passive Drug Targeting with Particle Systems / 6.5.1:
Active Drug Targeting with Particle Systems / 6.5.2:
Surface Modifications of Protein-based Nanoparticles / 6.5.3:
Surface Modification by Different Hydrophilic Compounds / 6.5.4:
Surface Modification by Polyethylene Glycol (PEG) Derivatives / 6.5.5:
Surface Modification by Drug-targeting Ligands / 6.5.6:
Different Surface Modification Strategies / 6.5.7:
Applications as Drug Carriers and for Diagnostic Purposes / 6.6:
Protein-based Nanoparticles in Gene Therapy / 6.6.1:
Parenteral Application Route / 6.6.2:
Preclinical Studies with Protein-based Particles / 6.6.2.1:
Clinical Studies with Protein-based Particles / 6.6.2.2:
Topical Application of Protein-based Particles / 6.6.3:
Peroral Application of Protein-based Particles / 6.6.4:
Immunological Reactions with Protein-based Microspheres / 6.7:
Albumin Nanoparticles / Socorro Espuelas6.8:
Serum Albumin / 7.1:
Preparation of Albumin Nanoparticles / 7.3:
"Conventional" Albumin Nanoparticles / 7.3.1:
Preparation of Albumin Nanoparticles by Desolvation or Coacervation / 7.3.1.1:
Preparation of Albumin Nanoparticles by Emulsification / 7.3.1.2:
Other Techniques to Prepare Albumin Nanoparticles / 7.3.1.3:
Surface-modified Albumin Nanoparticles / 7.3.2:
Drug Encapsulation in Albumin Nanoparticles / 7.3.3:
Biodistribution of Albumin Nanoparticles / 7.4:
Pharmaceutical Applications / 7.5:
Albumin Nanoparticles for Diagnostic Purposes / 7.5.1:
Radiopharmaceuticals / 7.5.1.1:
Echo-contrast Agents / 7.5.1.2:
Albumin Nanoparticles as Carriers for Oligonucleotides and DNA / 7.5.2:
Albumin Nanoparticles in the Treatment of Cancer / 7.5.3:
Fluorouracil and Methotrexate Delivery / 7.5.3.1:
Paclitaxel Delivery / 7.5.3.2:
Albumin Nanoparticles in Suicide Gene Therapy / 7.5.3.3:
Magnetic Albumin Nanoparticles / 7.5.4:
Albumin Nanoparticles for Ocular Drug Delivery / 7.5.5:
Topical Drug Delivery / 7.5.5.1:
Intravitreal Drug Delivery / 7.5.5.2:
Nanoscale Patterning of S-Layer Proteins as a Natural Self-assembly System / Margit Sara ; D. Pum ; C. Huber ; N. Ilk ; M. Pleschberger ; U. B. Sleytr7.6:
General Properties of S-Layers / 8.1:
Structure, Isolation, Self-Assembly and Recrystallization / 8.2.1:
Chemistry and Molecular Biology / 8.2.2:
S-Layers as Carbohydrate-binding Proteins / 8.2.3:
Nanoscale Patterning of S-Layer Proteins / 8.3:
Properties of S-Layer Proteins Relevant for Nanoscale Patterning / 8.3.1:
Immobilization of Functionalities by Chemical Methods / 8.3.2:
Patterning by Genetic Approaches / 8.3.3:
The S-Layer Proteins SbsA, SbsB and SbsC / 8.3.3.1:
S-Layer Fusion Proteins / 8.3.3.2:
Spatial Control over S-Layer Reassembly / 8.4:
S-Layers as Templates for the Formation of Regularly Arranged Nanoparticles / 8.5:
Binding of Molecules and Nanoparticles to Functional Domains / 8.5.1:
In Situ Synthesis of Nanoparticles on S-Layers / 8.5.2:
Conclusions and Outlook / 8.6:
Pharmaceutically Important Nanomaterials / III:
Methods of Preparation of Drug Nanoparticles / Jonghwi Lee ; Gio-Bin Lim ; Hesson Chung9:
Structures of Drug Nanoparticles / 9.1:
Thermodynamic Approaches / 9.3:
Lipid-based Pharmaceutical Nanoparticles / 9.3.1:
What is a Lipid? / 9.3.2:
Liquid Crystalline Phases of Hydrated Lipids with Planar and Curved Interfaces / 9.3.3:
Oil-in-water-type Lipid Emulsion / 9.3.4:
Liposomes / 9.3.5:
Cubosomes and Hexosomes / 9.3.6:
Other Lipid-based Pharmaceutical Nanoparticles / 9.3.7:
Mechanical Approaches / 9.4:
Types of Processing / 9.4.1:
Characteristics of Wet Comminution / 9.4.2:
Drying of Liquid Nanodispersions / 9.4.3:
SCF Approaches / 9.5:
SCF Characteristics / 9.5.1:
Classification of SCF Particle Formation Processes / 9.5.2:
RESS / 9.5.3:
SAS / 9.5.4:
SEDS / 9.5.5:
Electrostatic Approaches / 9.6:
Electrical Potential and Interfaces / 9.6.1:
Electrospraying / 9.6.2:
Production of Biofunctionalized Solid Lipid Nanoparticles for Site-specific Drug Delivery / Rainer H. Muller ; Eliana B. Souto ; Torsten Goppert ; Sven Gohla10:
Concept of Differential Adsorption / 10.1:
Production of SLN / 10.3:
Functionalization by Surface Modification / 10.4:
Conclusions / 10.5:
Biocompatible Nanoparticulate Systems for Tumor Diagnosis and Therapy / Mostafa Sadoqi ; Sunil Kumar ; Cesar Lau-Cam ; Vishal Saxena11:
Nanoscale Particulate Systems and their Building Blocks/Components / 11.1:
Dendrimers / 11.2.1:
Buckyballs and Buckytubes / 11.2.2:
Quantum Dots / 11.2.3:
Polymeric Micelles / 11.2.4:
Biodegradable Nanoparticles / 11.2.5:
Preparation of Nanoparticles / 11.3.1:
Biodegradable Optical Nanoparticles / 11.4:
Optical Nanoparticles as a Potential Technology for Tumor Diagnosis / 11.4.1:
Optical Nanoparticles as a Potential Technology for Tumor Treatment / 11.4.2:
Optical Imaging and PDT / 11.5:
Optical Imaging / 11.5.1:
Fluorescence-based Optical Imaging / 11.5.1.1:
NIR Fluorescence Imaging / 11.5.1.2:
NIR Dyes for Fluorescence Imaging / 11.5.1.3:
PDT / 11.5.2:
Basis of PDT / 11.5.2.1:
Photosensitizers for PDT / 11.5.2.2:
ICG: An Ideal Photoactive Agent for Tumor Diagnosis and Treatment / 11.5.3:
Clinical Uses of ICG / 11.5.3.1:
Structure and Physicochemical Properties of ICG / 11.5.3.2:
Binding Properties of ICG / 11.5.3.3:
Metabolism, Excretion and Pharmacokinetics of ICG / 11.5.3.4:
Toxicity of ICG / 11.5.3.5:
Tumor Imaging with ICG / 11.5.3.6:
PDT with ICG / 11.5.3.7:
Limitations of ICG for Tumor Diagnosis and Treatment / 11.5.3.8:
Recent Approaches for Improving the Blood Circulation Time and Uptake of ICG by Tumors / 11.5.3.9:
Recent Approaches for ICG Stabilization In Vitro / 11.5.3.10:
PLGA-based Nanoparticulate Delivery System for ICG / 11.6:
Rationale of Using a PLGA-based Nanoparticulate Delivery System for ICG / 11.6.1:
In Vivo Pharmacokinetics of ICG Solutions and Nanoparticles / 11.6.2:
Conclusions and Future Work / 11.7:
Nanoparticles for Crossing Biological Membranes / R. Pawar ; A. Avramoff ; A. J. Domb12:
Cell Membranes / 12.1:
Functions of Biological Membranes / 12.2.1:
Kinetic and Thermodynamic Aspects of Biological Membranes / 12.2.2:
Problems of Drugs Crossing through Biological Membranes / 12.3:
Through the Skin / 12.3.1:
Mechanical Irritation of Skin / 12.3.1.1:
Low-voltage Electroporation of the Skin / 12.3.1.2:
Through the BBB / 12.3.2:
Small Drugs / 12.3.2.1:
Limitations of Small Drugs / 12.3.2.1.1:
Peptide Drug Delivery via SynB Vectors / 12.3.2.2:
GI Barrier / 12.3.3:
Intestinal Translocation and Disease / 12.3.3.1:
Nanoparticulate Drug Delivery / 12.4:
Skin
Skin as Semipermeable Nanoporous Barrier / 12.4.1.1:
Hydrophilic Pathway through the Skin Barrier / 12.4.1.2:
Solid-Lipid Nanoparticles (SLN) Skin Delivery / 12.4.2:
Chemical Stability of SLN / 12.4.2.1:
In Vitro Occlusion of SLN / 12.4.2.2:
In Vivo SLN: Occlusion, Elasticity and Wrinkles / 12.4.2.3:
Active Compound Penetration into the Skin / 12.4.2.4:
Controlled Release of Cosmetic Compounds / 12.4.2.5:
Novel UV Sunscreen System Using SLN / 12.4.2.6:
Polymer-based Nanoparticulate Delivery to the Skin / 12.4.3:
Subcutaneous Nanoparticulate Antiepileptic Drug Delivery / 12.4.4:
Nanoparticulate Anticancer Drug Delivery / 12.4.5:
Paclitaxel / 12.4.5.1:
Doxorubicin / 12.4.5.2:
5-Fluorouracil (5-FU) / 12.4.5.3:
Antineoplastic Agents / 12.4.5.4:
Gene Delivery / 12.4.5.5:
Breast Cancer / 12.4.5.6:
Nanofibers Composed of Nonbiodegradable Polymer / 12.4.6:
Electrostatic Spinning / 12.4.6.1:
Scanning Electron Microscopy / 12.4.6.2:
Differential Scanning Calorimetry (DSC) / 12.4.6.3:
Nanoparticulate Delivery to the BBB / 12.5:
Peptide Delivery to the BBB / 12.5.1:
Peptide Conjugation through a Disulfide Bond / 12.5.1.1:
Biodegradable Polymer Based Nanoparticulate Delivery to BBB / 12.5.2:
Nanoparticulate Gene Delivery to the BBB / 12.5.3:
Mechanism of Nanoparticulate Drug Delivery to the BBB / 12.5.4:
Nanoparticulate Thiamine-coated Delivery to the BBB / 12.5.5:
Nanoparticle Optics and Living Cell Imaging / 12.5.6:
Oral Nanoparticulate Delivery / 12.6:
Lectin-conjugated Nanoparticulate Oral Delivery / 12.6.1:
Oral Peptide Nanoparticulate-based Delivery / 12.6.2:
Polymer-Based Oral Peptide Nanoparticulate Delivery / 12.6.3:
Polyacrylamide Nanospheres / 12.6.3.1:
Poly(alkyl cyanoacrylate) PACA Nanocapsules / 12.6.3.2:
Derivatized Amino Acid Microspheres / 12.6.3.3:
Lymphatic Oral Nanoparticulate Delivery / 12.6.4:
Oral Nanosuspension Delivery / 12.6.5:
Mucoadhesion of Nanoparticles after Oral Administration / 12.6.6:
Protein Nanoparticulate Oral Delivery / 12.6.7:
Index
Preface
List of Contributors
DNA-based Nanomaterials / I:
18.

図書

図書
edited by Challa S.S.R. Kumar
出版情報: Weinheim : Wiley-VCH, c2009  xxi, 507 p. ; 25 cm
シリーズ名: Nanomaterials for the life sciences / edited by Challa S.S.R. Kumar ; v. 3
所蔵情報: loading…
目次情報: 続きを見る
Gold Nanoshells in Biomedical Applications
Anisotropic Bimetallic/Oxide Nanomaterials for Life Sciences
Au-Pt Nanomaterials and Enzymatic Catalysts for Biofuel Cells Application
Spherical & Anisotropic Metallic Nanomaterials-based NSET Biosensors
Mixed Metal Oxide Nanomaterials for Environmental Remediation
Building Nonmagnetic Metal@Oxide and Bimetallic Nanostructures-Potential applications in Life Sciences
Biofunctionalization of Spherical and Anisotropic Bimetallic Nanomaterials
Multielemental Nanorods(nanowires): Synthesis, Characterization and Analytical Applications
Spherical and Anisotropic Non-Magnetic Core-Shell Nanomaterials: Synthesis and Characterization
Spherical and Anisotropic Silica Shell Nanomaterials
Spherical and Anisotropic Core-shell and Alloy Nanomaterials-Characterization using X-ray Absorption spectroscopy
Anisotropic Hexagonal Boron Nitride Nanomaterials: Synthesis and Applications
Spherical and Anisotropic Boron Nitride Nanomaterials-Synthesis and Characterization
Gold Nanoshells in Biomedical Applications
Anisotropic Bimetallic/Oxide Nanomaterials for Life Sciences
Au-Pt Nanomaterials and Enzymatic Catalysts for Biofuel Cells Application
19.

図書

図書
edited by Kurt E. Geckeler and Hiroyuki Nishide
出版情報: Weinheim : Wiley-VCH, c2010  2 v. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Phase-Selective Chemistry in Block Copolymer Systems / 1:
Block Copolymer Nanofibers and Nanotubes / 2:
Smart Nanoassemblies of Block Copolymers for Drug and Gene Delivery / 3:
A Comprehensive Approach to the Alignment and Ordering of Block Copolymer Morphologies / 4:
Helical Polymer-Based Supramolecular Films / 5:
Synthesis of Inorganic Nanotubes / 6:
Gold Nanoparticles and Carbon Nanotubes: Precursors for Novel Composite Materials / 7:
Recent Advances in Metal Nanoparticle-Attached Electrodes / 8:
Mesoscale Radical Polymers: Bottom-Up Fabrication of Electrodes in Organic Polymer Batteries / 9:
Oxidation Catalysis by Nanoscale Gold, Silver, and Copper / 10:
Self-Assembling Nanoclusters Based on Tetrahalometallate Anions: Electronic and Mechanical Behavior / 11:
Optically Responsive Polymer Nanocomposites Containing Organic Functional Chromophores and Metal Nanostructures / 12:
Nanocomposites Based on Phyllosilicates: From Petrochemicals to Renewable Thermoplastic Matrices / 13:
Amphiphilic Poly(Oxyalkylene)-Amines Interacting with Layered Clays: Intercalation, Exfoliation, and New Applications / 14:
Mesoporous Alumina: Synthesis, Characterization, and Catalysis / 15:
Nanoceramics for Medical Applications / 16:
Self-healing of Surface Cracks in Structural Ceramics / 17:
Ecological Toxicology of Engineered Carbon Nanoparticles / 18:
Carbon Nanotubes as Adsorbents for the Removal of Surface Water Contaminants / 19:
Molecular Imprinting with Nanomaterials / 20:
Near-Field Raman Imaging of Nanostructures and Devices / 21:
Fullerene-Rich Nanostructures / 22:
Interactions of Carbon Nanotubes with Biomolecules: Advances and Challenges / 23:
Nanoparticle-Cored Dendrimers and Hyperbranched Polymers: Synthesis, Properties, and Applications / 24:
Concepts in Self-Assembly / 25:
Nanostructured Organogels via Molecular Self-Assembly / 26:
Self-assembly of Linear Polypeptide-based Block Copolymers / 27:
Structural DNA Nanotechnology: Information-Guided Self-Assembly / 28:
Phase-Selective Chemistry in Block Copolymer Systems / 1:
Block Copolymer Nanofibers and Nanotubes / 2:
Smart Nanoassemblies of Block Copolymers for Drug and Gene Delivery / 3:
20.

図書

東工大
目次DB

図書
東工大
目次DB
Takaaki Tsurumi ... [et al.]
出版情報: Boca Raton [Fla.] : CRC Press, c2010  xii, 267 p., [8] p. of plates ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface vii
Acknowledgments ix
Authors xi
Chapter 1 Fundamentals of quantum mechanics and band structure 1
   1.1 Fundamentals of quantum mechanics 1
    1.1.1 Probability amplitude and interference effects 1
    1.1.2 Uncertainty principle 5
    1.1.3 Wave functions 7
    1.1.4 Operators 8
    1.1.5 Eigenvalue and expected value 10
    1.1.6 Expansion theorem 10
    1.1.7 Schroedinger equation 11
    1.1.8 Principle of superposition 13
    1.1.9 Examples of solutions of the Schroedinger equation 14
     1.1.9.1 Electron in a one-dimensional (1D) box 14
     1.1.9.2 Harmonic oscillator 15
     1.1.9.3 Hydrogen atom 16
    1.1.10 Matrix mechanics and bra-ket (Dirac) notation 18
    1.1.11 Comparison of the Heisenberg and Schroedinger approaches to quantum mechanics 20
    1.1.12 Perturbation theory 22
   1.2 Electronic band structure of solids 27
    1.2.1 Free electron Fermi gas 27
    1.2.2 Nearly free electron model (DOS) 31
    1.2.3 Bloch function 33
    1.2.4 Kroenig-Penny model 33
    1.2.5 Tight binding model 35
    1.2.6 Phase velocity, group velocity, and effective mass 37
    1.2.7 Reciprocal lattice and the Brillouin zone 40
    1.2.8 Energy band structure of silicon (Si) 44
    1.2.9 Tight binding approximation for calculating the band structure of graphene 45
    1.2.10 Electron correlation 51
     1.2.10.1 Hartree-Fock approximation 51
     1.2.10.2 Density functional method 54
   1.3 Material properties with respect to characteristic size in nanostructures 56
   Problems 60
   References 60
Chapter 2 Electronic states and electrical properties of nanoscale materials 63
   2.1 Outline 63
   2.2 Low dimensionality and energy spectrum 64
    2.2.1 Space for electrons in materials 64
    2.2.2 Electron DOS of 3D materials with macroscopic dimensions 65
    2.2.3 Electron DOS in 2D materials (nanosheets) 67
    2.2.4 Electron DOS in lD materials (nanowires) 72
    2.2.5 Quantized conductance in 1D nanowire systems 74
    2.2.6 Electron DOS in 0D materials (nanodots) 77
   2.3 Quantization 79
    2.3.1 2D square wells 80
    2.3.2 2D cylindrical wells 83
    2.3.3 Shape effect on the quantized states 85
    2.3.4 Finite potential wells 87
    2.3.5 Band dispersion effect 93
   2.4 Edge (surface)-localized states 96
   2.5 Charging effect 100
   2.6 Tunneling phenomena 103
   2.7 Limiting factors for size effects 111
    2.7.1 Thermal fluctuation 111
    2.7.2 Lifetime broadening effect 113
   2.8 Electronically induced stable nanostructures 115
    2.8.1 Magic numbers in clusters 116
    2.8.2 Electronic growth 119
   Problems 122
   References 123
Chapter 3 Optical properties and interactions of nanoscale materials 125
   3.1 Size-dependent optical properties: Absorption and emission 125
    3.1.1 Basic quantum mechanics of linear optical transitions 126
    3.1.2 General concept of excitons 133
    3.1.3 Wannier excitons 135
    3.1.4 Size effects in high-dielectric-constant materials 136
    3.1.5 Size effects in π-conjugated systems 140
    3.1.6 Strongly interacting π-conjugated systems: A molecular dimer 144
    3.1.7 Molecular Frenkel exciton 149
    3.1.8 Size effects in molecular excitons: Coherence length and cooperative phenomena 153
    3.1.9 Effects of finite number of optical electrons 157
   3.2 Size-dependent optical properties: Absorption and scattering 158
    3.2.1 Basic theory of light scattering 160
    3.2.2 Size-dependent scattering from dielectric spheres: Mie solutions 164
    3.2.3 Optical properties of metal nanoparticles: Plasmonics 169
    3.2.4 Local field enhancement and surface-enhanced Raman scattering 176
   3.3 Size-dependent electromagnetic interactions: Particle-particle 179
    3.3.1 Radiative energy transfer 179
    3.3.2 Foerster resonant energy transfer (FRET) 180
    3.3.3 Electron-exchange (Dexter) energy transfer 187
    3.3.4 Photo-induced electron transfer 190
   3.4 Size-dependent interactions: Particle-light interactions in finite geometries 191
    3.4.1 Optical interactions in microcavities 191
    3.4.2 Effects of dielectric interfaces 198
   Problems 201
   References 204
Chapter 4 Magnetic and magnetotransport properties of nanoscale materials 207
   4.1 Fundamentals of magnetism 207
    4.1.1 Magnetic ions and magnetic ordering 207
    4.1.2 Exchange interaction 208
    4.1.3 Mean field theory of ferromagnetism 211
   4.2 Size and surface effects in 3D confined systems 213
    4.2.1 Quantization of electronic structures and the Kubo effect 214
    4.2.2 Surface magnetism of transition noble metals 220
   4.3 Ferromagnetic domain-wall-related phenomena 229
    4.3.1 Macroscopic quantum tunneling in magnetic nanostructures 229
    4.3.2 Electron scattering at domain walls: Quantum coherence 233
    4.3.3 Spin current and spin transfer torque-current-induced domain wall motion 235
   4.4 Spin transport in magnetic nanostructures: Magnetic interface effect 240
    4.4.1 GMR and TMR effect: Spin-dependent scattering in multilayers and tunneling junctions 240
    4.4.2 Spin accumulation and current-perpendicular-to-plane (CPP) GMR: Spin diffusion length 245
    4.4.3 Spin Hall effect: Side jump and skew scattering due to spin-orbit coupling 249
   Problems 253
   References 253
Index 257
Preface vii
Acknowledgments ix
Authors xi
21.

図書

図書
edited by A.V. Narlikar, Y.Y. Fu
出版情報: Oxford : Oxford University Press, 2010  xix, 898 p. ; 26 cm
シリーズ名: The Oxford handbook of nanoscience and technology / edited A.V. Narlikar, Y.Y. Fu ; v. 1
所蔵情報: loading…
目次情報: 続きを見る
Nanoelectronic Devices: A Unified View / Supriyo Datta1:
Electronic and Transport Properties of Doped Silicon Nanowires / M.-V. Fernandez-Serra ; X. Blase2:
NEGF-Based Models for Dephasing in Quantum Transport / Roksana Golizadeh-Mojarad3:
Molecular Nanowires and their Properties as Electrical Conductors / George Kirczenow4:
Quasi-Ballistic Electron Transport in Atomic Wires / Jan M van Ruitenbeek5:
Thermal Transport of Small Systems / Takahiro Yamamoto ; Kazuyuki Watanabe ; Satoshi Watanabe6:
Atomistic Spin Dynamics / Maria Stamenova ; Stefano Sanvito7:
Patterns and Pathways in Nanoparticle Self-Organisation / M.O. Blunt ; A. Stannard ; E. Pauliac-Vaujour ; C.P. Martin ; Ioan Vancea ; Milovan Suvakov ; Uwe Thiele ; Bosiljka Tadic ; P. Moriarty8:
Self-Organizing Atom Chains / Arie van Houselt ; Harold J.W. Zandvliet9:
Design Low Dimension Nanostructures at Surfaces by Supramolecular Chemistry / Nian Lin ; Sebastian Stepanow10:
Nanostructured Surfaces: Dimensionally Constrained Electrons and Correlation / E. Bertel ; A. Menzel11:
Reaction Studies on Nanostructured Surfaces / Adolf Winkler12:
Nanotribology / S.K.Biswas13:
The Electronic Structure of Epitaxial Graphene - A View from Angle-Resolved Photoemission Spectroscopy / S.Y. Zhou ; A. Lanzara14:
Theoretical Simulations of Scanning Tunneling Microscope Images and Spectra of Nanostructures / Jinlong Yang ; Qunxiang Li15:
Functionalization of Single-Walled Carbon Nanotubes: Chemistry and Characterization / R. Graupner ; F. Hauke16:
Quantum Theoretical Aproaches to Proteins and Nucleic Acids / Mauro Boero ; Masaru Tateno17:
Magnetoresistive Phenomena in Nanoscale Magnetic Contacts / J. D. Burton ; E. Y. Tsymbal18:
Novel Superconducting States in Nanoscale Superconductors / A. Kanda ; Y. Ootuka ; K. Kadowaki ; F.M. Peeters19:
Left Handed Metamaterials - A Review / E. Ozbay ; G. Ozkan ; K. Aydin20:
2D Arrays of Josephson Nanocontacts and Nanogranular Superconductors / Sergei Sergeenkov21:
Theory, Experiment and Applications of Tubular Image States / Dvira Segal ; Petr Kral ; Moshe Shapiro22:
Correlated Electron Transport in Molecular Junctions / K. S. Thygesen ; A. Rubio23:
Spin Currents in Semiconductor Nanostructures: A Nonequilibrium Green Function Approach / Branislav K. Nikolic ; Liviu P. Zarbo ; Satofumi Souma24:
Disorder Induced Electron Localization in Molecular Based Materials / Sven Stafstrom ; Mikael Unge25:
Nanoelectronic Devices: A Unified View / Supriyo Datta1:
Electronic and Transport Properties of Doped Silicon Nanowires / M.-V. Fernandez-Serra ; X. Blase2:
NEGF-Based Models for Dephasing in Quantum Transport / Roksana Golizadeh-Mojarad3:
22.

図書

図書
edited by A.V. Narlikar, Y.Y. Fu
出版情報: Oxford : Oxford University Press, 2010  xxii, 934 p. ; 26 cm
シリーズ名: The Oxford handbook of nanoscience and technology / edited A.V. Narlikar, Y.Y. Fu ; v. 2
所蔵情報: loading…
23.

図書

図書
edited by A.V. Narlikar, Y.Y. Fu
出版情報: Oxford : Oxford University Press, 2010  xx, 910 p. ; 26 cm
シリーズ名: The Oxford handbook of nanoscience and technology / edited A.V. Narlikar, Y.Y. Fu ; v. 3
所蔵情報: loading…
目次情報: 続きを見る
Role of Computatioanal Sciences in Si-Nano Technologies and Devices / K. Shiraishi ; T. Nakayama1:
Few-Electron Quantum Dot Spintronics / D. V. Melnikov ; J. Kim ; L.-X. Zhang ; J.-P. Leburton2:
Spintronics with Metallic Nanowires / J.-Ph. Ansermet3:
Molecular Nanomagnets: Towards Molecular Spintronics / W. Wernsdorfer4:
Si/SiGe Heterostructures in Nanoelectronics / D.J. Paul5:
Quantum Dots: Self-Organized and Self-Limiting Assembly / Dimitri D. Vvedensky6:
Intersublevel Quantum-Dot Infrared Photodetectors / E. Towe ; D. Pal7:
Nanoionics and its Device Applications / T. Hasegawa ; K. Terabe ; T. Sakamoto ; M. Aono8:
Molecular Electronics Based on Self-Assembled Monolayers / D. Vuillaume9:
Self-Assembly Strategy of Nanomanufacturing of Hybrid Devices / S. Hong ; Y.-K. Kwon ; J.S. Ha ; N.-K. Lee ; B. Kim ; M. Sung10:
Templated Carbon Nanotubes and the Use of their Cavities for Nanomaterial Synthesis / T. Kyotani ; H. Orikasa11:
Nanocatalysis / R. T. Vang ; S. Wendt ; F. Besenbacher12:
Bi-Functional Nanomaterials for the Imaging and Treatment of Cancer / A. Burke ; D. Carroll ; F. M. Torti ; S.V. Torti13:
NanoParticles in Medicine / D. Maysinger ; P. Kujawa ; J. Lovric14:
Nanostructured Probes to Enhance Optical and Vibrational Spectroscopic Imaging for Biomedical Applications / Anil K. Kodali ; Rohit Bhargava15:
Protein Based Nano-Devices / P.P. Pompa ; R. Rinaldi16:
Bioconjugated Quantum Dots for Tumor Molecular Imaging and Profiling / P. Zrazhevskiy ; X. Gao17:
Modulation Design of Plasmonics for Diagnostic and Drug Screening / C.-W. Lin ; N.-F. Chiu ; C.-C. Chang18:
Carbon Nanotube Field Emission Electron and X-Ray Technology for Medical Research and Clinical Applications / Sigen Wang ; Otto Zhou ; Sha Chang19:
Theory of Hydrogen Storage in Nanoscale Materials / Yufeng Zhao ; Yong-Hyun Kim ; S. B. Zhang ; Michael J. Heben20:
Electron Cold Sources: Nanotechnology Contribution to Field Emitters / Vu Thien Binh21:
Free-Standing Grid-Like Nanostructures Assembled into 3-D Open Architectures for Photovoltaic Devices / X.Y. Kong ; Y.C. Wang ; X. F. Fan ; G. F. Guo ; L. M. Tong ; Z.F. Liu22:
Nanolithography Using Molecular Films and Processing / C.L. McGuiness ; R.K. Smith ; M.E. Anderson ; P. S. Weiss ; D. L. Allara23:
Laser Applications in Nanotechnology / M. H. Hong24:
Evaluating the Risks Associated with Nanomaterials / K. Thomas ; N. Monteiro-Riviere ; D. Warheit ; N. Savage25:
Role of Computatioanal Sciences in Si-Nano Technologies and Devices / K. Shiraishi ; T. Nakayama1:
Few-Electron Quantum Dot Spintronics / D. V. Melnikov ; J. Kim ; L.-X. Zhang ; J.-P. Leburton2:
Spintronics with Metallic Nanowires / J.-Ph. Ansermet3:
24.

図書

図書
K. C. Patil ... [et al.]
出版情報: New Jersey : World Scientific, c2008  xvi, 345 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Preface
Introduction / 1:
General / 1.1:
Preparative Methods / 1.2:
Scope of the Book / 1.3:
Combustible Solid Precursors to Nanocrystalline Oxide Materials / 2:
Combustible Metal Hydrazine and Metal Hydrazine Carboxylate Complexes / 2.1:
Metal Hydrazine Carboxylates: Precursors to Simple Metal Oxides / Part I:
Preparation of Metal Formate, Acetate, Oxalate, and Hydrazine Carboxylates / 2.3:
Thermal Analysis and Combustion of Metal Hydrazine Carboxylates / 2.3.1:
Single Source Precursors to Mixed Metal Oxides / Part II:
Mixed Metal Oxides / 2.4:
Mixed Metal Acetate and Oxalate Hydrazinates: Precursors to Cobaltites / 2.4.1:
Mixed Metal Oxalate Hydrazinates: Precursors to Spinel Ferrites / 2.4.2:
Mixed Metal Oxalate Hydrates: Precursors to Metal Titanates / 2.4.3:
Mixed Metal Hydrazinium Hydrazine Carboxylates / 2.5:
Mixed Metal Hydrazinium Hydrazine Carboxylates: Precursors to Nano-Cobaltites and Ferrites / 2.5.1:
Mixed Metal Hydrazinium Hydrazine Carboxylates: Precursors to Mixed Ferrites / 2.5.2:
Mixed Metal Hydrazinium Hydrazine Carboxylates: Precursors to Manganites / 2.5.3:
Concluding Remarks / 2.6:
Solution Combustion Synthesis of Oxide Materials / 3:
Solution Combustion Synthesis (SCS) / 3.1:
Synthesis of Alumina / 3.2.1:
Mechanism of Aluminum Nitrate-Urea Combustion Reaction / 3.2.2:
Thermodynamic Calculation / 3.2.3:
Role of Fuels / 3.3:
A Recipe for the Synthesis of Various Classes of Oxides / 3.4:
Recipe for Nanomaterials / 3.4.1:
Salient Features of Solution Combustion Method / 3.5:
Alumina and Related Oxide Materials / 4:
[alpha]-Alumina / 4.1:
Metal Aluminates (MAl[subscript 2]O[subscript 4]) / 4.4:
Rare Earth Orthoaluminates (LnAlO[subscript 3]) / 4.5:
Garnets / 4.6:
Aluminum Borate / 4.7:
Tialite ([beta]-Al[subscript 2]TiO[subscript 5]) / 4.8:
Aluminum Phosphate / 4.9:
Alumina Composites / 4.10:
Al[subscript 2]O[subscript 3]-SiO[subscript 2] System: Mullite / 4.10.1:
Al[subscript 2]O[subscript 3]-SiO[subscript 2] System: Cordierite / 4.10.2:
Al[subscript 2]O[subscript 3]-Si[subscript 3]N[subscript 4] System: SiAlON / 4.10.3:
Alumina Nanocomposites / 4.11:
Nanocatalysts, Dispersion of Nano-metals (Ag, Au, Pd, and Pt) in Al[subscript 2]O[subscript 3] / 4.11.1:
Nanopigments / 4.12:
Cobalt-Based Blue Alumina and Aluminates / 4.12.1:
Chromium-Doped Pink Alumina (Cr[superscript 3+]/Al[subscript 2]O[subscript 3]): Ruby / 4.12.2:
Chromium-Doped Aluminates and Orthoaluminates (Cr[superscript 3+]/MAl[subscript 2]O[subscript 4](M = Mg & Zn)) and LaAlO[subscript 3]) / 4.12.3:
Nanophosphors / 4.13:
Phosphor Materials (Luminescence in Aluminum Oxide Hosts) / 4.13.1:
Nano-Ceria and Metal-Ion-Substituted Ceria / 4.14:
Synthesis and Properties of Nano-Ceria / 5.1:
Synthesis of Metal-Ion-Substituted Ceria / 5.3:
Characterization of Metal-Ion-Substituted Ceria / 5.4:
Oxygen Storage Materials / 5.5:
Metal-Ion-Substituted Ceria as Nanocatalysts / 5.6:
Ce[subscript 1-x]Pd[subscript x]O[subscript 2-delta] as a Three-Way Catalyst / 5.6.1:
Ce[subscript 1-x]Pt[subscript x]O[subscript 2-delta] / 5.6.2:
Ce[subscript 1-x]Rh[subscript x]O[subscript 2-delta] / 5.6.3:
Bimetal Ionic Catalysts (Ce[subscript 1-x]Pt[subscript x/2]O[subscript 2-delta]) / 5.6.4:
Nanocrystalline Fe[subscript 2]O[subscript 3] and Ferrites / 5.7:
Magnetic Materials / 6.1:
[gamma]-Fe[subscript 2]O[subscript 3] / 6.2:
Spinel Ferrites (MFe[subscript 2]O[subscript 4]) / 6.3:
Mixed Metal Ferrites / 6.4:
Li-Zn Ferrites / 6.4.1:
Mg-Zn Ferrites / 6.4.2:
Ni-Zn Ferrites / 6.4.3:
Rare Earth Orthoferrites / 6.5:
Garnets (Ln[subscript 3]Fe[subscript 5]O[subscript 12]) / 6.6:
Barium and Strontium Hexaferrites / 6.7:
Nano-Titania and Titanates / 6.8:
Nano-TiO[subscript 2] (Anatase) / 7.1:
Synthesis and Properties of Nano-TiO[subscript 2] (Anatase) / 7.2.1:
Photocatalytic Properties of Nano-TiO[subscript 2] / 7.3:
Metal-Ion-Substituted TiO[subscript 2] / 7.4:
Synthesis and Photocatalytic Properties of Ti[subscript 1-x]M[subscript x]O[subscript 2-delta] (M = Ag, Ce, Cu, Fe, V, W, and Zr) / 7.4.1:
Synthesis and Properties of Ti[subscript 1-x]Pd[subscript x]O[subscript 2-delta] / 7.4.2:
Catalytic Properties of Ti[subscript 1-x]Pd[subscript x]O[subscript 2-delta] / 7.4.3:
Titanates for Nuclear Waste Immobilization / 7.5:
Sintering and Microstructure Studies / 7.5.1:
Zirconia and Related Oxide Materials / 7.6:
Zirconia / 8.1:
Preparation and Properties of ZrO[subscript 2] / 8.2.1:
Stabilized Zirconia / 8.3:
Magnesia-Stabilized Zirconia / 8.3.1:
Calcia-Stabilized Zirconia / 8.3.2:
Yttria-Stabilized Zirconia (YSZ) / 8.3.3:
Nickel in Yttria-Stabilized Zirconia (Ni-YSZ) / 8.3.4:
Nano-Zirconia Pigments / 8.4:
ZrO[subscript 2]-Al[subscript 2]O[subscript 3] System: ZTA / 8.5:
ZrO[subscript 2]-CeO[subscript 2] System / 8.6:
ZrO[subscript 2]-TiO[subscript 2] System (ZrTiO[subscript 4] and Zr[subscript 5]Ti[subscript 7]O[subscript 24]) / 8.7:
ZrO[subscript 2]-Ln[subscript 2]O[subscript 3] System: Pyrochlores / 8.8:
NASICONs / 8.9:
MZr[subscript 2]P[subscript 3]O[subscript 12](M = Na, K, 1/2 Ca, and 1/4 Zr) and NbZrP[subscript 3]O[subscript 12] / 8.9.1:
NASICON (Na Superionic Conductor) Materials (Na[subscript 1+x]Zr[subscript 2]P[subscript 3-x]Si[subscript x]O[subscript 12]) / 8.9.2:
Perovskite Oxide Materials / 8.10:
Dielectric Materials / 9.1:
MTiO[subscript 3], MZrO[subscript 3] (M = Ca, Sr, and Ba) / 9.2.1:
Lead-Based Dielectric Materials (PbTiO[subscript 3], PbZrO[subscript 3], PZT, and PLZT) / 9.2.2:
Relaxor Materials (PFN, PMN, PNN, and PZN) / 9.3:
Microwave Resonator Materials / 9.4:
Preparation and Properties of LnMO[subscript 3] (M = Cr, Mn, Fe, Co, and Ni) / 9.5:
Preparation and Properties of La[subscript 1-x]Sr[subscript x]MO[subscript 3] (M = Mn and Fe) / 9.6:
Nanocrystalline Oxide Materials for Special Applications / 9.7:
Synthesis and Properties of Simple Oxides / 10.1:
Metal Silicates / 10.2:
Ceramic Pigments / 10.3:
Borate Pigments / 10.3.1:
Metal Chromite Pigments / 10.3.2:
Silicate Pigments / 10.3.3:
Ceria-Based Pigment-Ce[subscript 1-x]Pr[subscript x]O[subscript 2-delta] / 10.3.4:
Eu[superscript 3+]-Ion-Doped Red Phosphors / 10.4:
Metal Vanadates / 10.5:
Rare Earth Metal Oxides (La[subscript 2]MO[subscript 4]) / 10.6:
Appendix A / 10.7:
Oxidizers (Metal Nitrates) / A.1:
Preparation of Titanyl Nitrate (TiO(NO[subscript 3])[subscript 2]) / A.1.1:
Fuels / A.2:
Carbohydrazide (CH), CH[subscript 6]N[subscript 4]O / A.2.1:
Oxalyl Dihydrazide (ODH), C[subscript 2]H[subscript 6]N[subscript 4]O[subscript 2] / A.2.2:
Tetraformal Trisazine (TFTA), C[subscript 4]H[subscript 16]N[subscript 6]O[subscript 2] / A.2.3:
N, N'-Diformyl Hydrazine (DFH), C[subscript 2]H[subscript 4]N[subscript 2]O[subscript 2] / A.2.4:
Maleic Hydrazide (MH), C[subscript 4]H[subscript 4]N[subscript 2]O[subscript 2] / A.2.5:
Malonic Acid Dihydrazide (MDH), C[subscript 3]H[subscript 8]N[subscript 4]O[subscript 2] / A.2.6:
3-Methyl Pyrazole 5-One (3MP5O), C[subscript 4]H[subscript 6]N[subscript 2]O / A.2.7:
Useful Suggestions / A.3:
Index
Foreword
Preface
Introduction / 1:
25.

図書

図書
editors Charles M. Lukehart, Robert A. Scott
出版情報: Chichester : Wiley, 2008  xvi, 840 p. ; 29 cm
シリーズ名: EIC books
所蔵情報: loading…
26.

図書

図書
Geoffrey A. Ozin, André C. Arsenault and Ludovico Cademartiri ; [foreword by Chad A. Mirkin]
出版情報: Cambridge, UK : Royal Society of Chemistry, c2009  liii, 820 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Nanochemistry Basics / Chapter 1:
Chemical Patterning and Lithography / Chapter 2:
Layer-by-Layer Self-Assembly / Chapter 3:
Nanocontact Printing and Writing - Stamps and Tips / Chapter 4:
Nanorod, Nanotube, Nanowire Self-Assembly / Chapter 5:
Nanocrystal Synthesis and Self-Assembly / Chapter 6:
Microspheres - Colors from the Beaker / Chapter 7:
Microporous and Mesoporous Materials from Soft Building Blocks / Chapter 8:
Self-Assembling Block Copolymers / Chapter 9:
Biomaterials and Bioinspiration / Chapter 10:
Self-Assembly of Large Building Blocks / Chapter 11:
Nano and Beyond / Chapter 12:
Nanolabs / Chapter 13:
Nanochemistry Basics / Chapter 1:
Chemical Patterning and Lithography / Chapter 2:
Layer-by-Layer Self-Assembly / Chapter 3:
27.

図書

図書
edited by Michael J. Zehetbauer and Yuntian Theodore Zhu
出版情報: Weinheim : Wiley-VCH, c2009  xxvi, 710 p. ; 25cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction and Overviews 0
Preface
Nanostructured Materials: an Overview / 1:
Metallic BNM from SPD: Techniques, Properties, Applications (SPD ind. phase transformations, chiseling, upscaling, SPD impact properties) / 2:
Non-metallic nanomaterials Fundamentals of BNM / 3:
Deformation Mechanisms of BNM / 4:
Modelling of Strength and Strengthening of BNM / 5:
FEM Modelling of SPD methods / 6:
MD Simulation of Deformation Mechanisms of Nanoscaled Materials Processing of BNM / 7:
ECAP: Processing Fundamentals and Recent Progresses / 8:
HPT: Features & applications / 9:
ARB: Features & applications / 10:
BNM from FSP: Features & Properties / 11:
BNM from ball milling and consolidation / 12:
BNM from amorphous materials / 13:
Continuous SPD techniques, and post-SPD processing Characterization of BNM / 14:
TEM Characterization of BNM Structures / 15:
X-Ray Diffraction Analysis of BNM Microstructures / 16:
SPD Textures and Modelling Properties of BNM / 17:
Mechanical Properties of Nanostructured Metals (including SRS, and mechanical behavior at low temperature and high stain rate) / 18:
Superplasticity of BNM / 19:
Fracture & Crack growth in BNM / 20:
Fatigue properties of BNM / 21:
Diffusion in BNM and SPD-BNM / 22:
Creep of BNM / 23:
Properties of bulk nanostructured ceramics Applications of BNM / 24:
BNM from Multi-phase ferrous and non-ferrous Alloys / 25:
Magnetic BNM / 26:
Novel features of BNM: H storage, IC forcefills and others / 27:
SPD Nanostructured Surfaces / 28:
Commercialisation of BNM / 29:
Introduction and Overviews 0
Preface
Nanostructured Materials: an Overview / 1:
28.

図書

図書
edited by Hiroshi Fukumura ... [et al.]
出版情報: Weinheim : Wiley-VCH, c2009  xxxi, 314 p. ; 25 cm
シリーズ名: Molecular nano dynamics / edited by Hiroshi Fukumura ... [et al.] ; v. 1
所蔵情報: loading…
目次情報: 続きを見る
Spectroscopic Methods for Nano Interfaces / Volume 1:
Fluorescence and Raman Spectroscopy Coupled with Scanning Tunneling Microscopy
Real-Time Measurement of Solid/Liquid Interfacial Electron Transfer Dynamics by Nonlinear Spectroscopy
Time-Resolved Near-Field Spectroscopic Study on Photophysical Processes of Molecules and Quantum Dots at Interfaces
Time-resolved Anisotropic Decays of Polymer Chains Studied by Near-Field Optical Microscopy
Nonlinear Raman Spectroscopy of THz Vibrations at Liquid-Solid Interfaces
Nanostructure Characteristics and Dynamics / II:
Hierarchical Structures in Molecular Systems with Self-Organization Methods
Light-Induced Hierarchical Morphology of Polymer Mixtures Confined in Mesoscopic Length Scales
Molecular Photo-Recognition and Segregation at Solid Surface with Periodic Metal Nano-Architecture
Formation of Nanostructures at the Interface of Polymer Films: Time-Resolved Fluorescence Microspectroscopy
Clarification of Mechanisms of Cooperative Chemical Phenomena by Microspectroscopy in Bistable Systems
Study on Ionic-Liquid/Nanocrystal Interfacial Reaction Based on Single Particle and Single Molecule Spectroscopy
Construction of Nanostructures in Reaction Fields and Measurement of Reaction Dynamics at Solid-Liquid Interfaces by Use of Strong Magnetic Fields and Spin Chemistry
Asymmetric Potential Generation on a Substrate and Reaction Analysis by SECM/
AFM/Optical Microscopy
Control of Temporal Intermittence of Photoluminescence from Single Quantum Dots
Single Biocells / III:
Light Scattering Imaging and Femtosecond Nonlinear Processing of Single Living Cells
Super-resolution Infrared Microspectroscopy for Single Living Cells
3D Super-resolution Microspectroscopic Study on Environment-sensitive Photosynthetic Units
Photothermal and Photoinonization Spectroscopy on Single Living Cells
Fluorescence Lifetime Imaging Study on Single Living Cells in View of External and pH Effects
Photon Force Measurement on Single Living Cells and Their Interactions
Nonlinear Nano Vibrational Spectroscopy for Life Science
Matrix Spectroscopy for Non-invasive Evaluation of Cell Differentiation
Optical Trapping Study on Differentiation of Single ES Cells in Solution
Spectroscopy and Reaction of Gold Nanorods in Living Cells and Organisms
Laser-induced Injection and Plasmon Sensitization of Gold Nanoparticles in Chloroplasts
Fluorescence Correlation Spectroscopy on Molecular Diffusion in Single Living Cells
Active Surfaces / Volume 2:
Catalysts and Surfaces by Dynamic XAFS
Surface Reactions by Dynamic NEXAFS
Nuclear Wavepacket Dynamics in Ultrashort Pulse Induced Surface Photochemical Reactions
Ultrafast Near-Field Spectroscopy on Spatiotemporal Coherence of Elementary Excitations in Nanostructures
Real Time Observation of Surface Chemical Reaction by Nonlinear Spectroscopy
Quantum Dynamics and Control of Surface Ultra-Fast Processes
Dynamic Behavior of Active Ag species in NOx Reduction on Ag/Al2O3
Dynamic Behavior of Active Structures During Catalysis
Structures for Photocatalysis
Single Crystals / V:
Morphology Changes of Photochromic Single Crsytals
Ultra-Fine Structural Control of Organic Crystals Using Solid-State Polymerization Reactions
Temporal and Space Resolved Detection of Laser-Induced Crystallization Processes
Crystal Growth by Photo-Induced Intermolecular Interaction
Time-Resolved Structure Analysis of Photo-Induced Crystalline State Reaction with MSGC Detector
Reaction Dynamics Study of Single Crystalline Photochromisim of Disulfone Complexes
Measurements and Dynamics of Intercalation into Organic Layered Crystals
Morphology Change and Structure Control of Organic Cocrystals
Spectroscopic Methods for Nano Interfaces / Volume 1:
Fluorescence and Raman Spectroscopy Coupled with Scanning Tunneling Microscopy
Real-Time Measurement of Solid/Liquid Interfacial Electron Transfer Dynamics by Nonlinear Spectroscopy
29.

図書

図書
edited by Hiroshi Fukumura ... [et al.]
出版情報: Weinheim : Wiley-VCH, c2009  xxxi, 317-722 p. ; 25 cm
シリーズ名: Molecular nano dynamics / edited by Hiroshi Fukumura ... [et al.] ; v. 2
所蔵情報: loading…
目次情報: 続きを見る
Spectroscopic Methods for Nano Interfaces / Volume 1:
Fluorescence and Raman Spectroscopy Coupled with Scanning Tunneling Microscopy
Real-Time Measurement of Solid/Liquid Interfacial Electron Transfer Dynamics by Nonlinear Spectroscopy
Time-Resolved Near-Field Spectroscopic Study on Photophysical Processes of Molecules and Quantum Dots at Interfaces
Time-resolved Anisotropic Decays of Polymer Chains Studied by Near-Field Optical Microscopy
Nonlinear Raman Spectroscopy of THz Vibrations at Liquid-Solid Interfaces
Nanostructure Characteristics and Dynamics / II:
Hierarchical Structures in Molecular Systems with Self-Organization Methods
Light-Induced Hierarchical Morphology of Polymer Mixtures Confined in Mesoscopic Length Scales
Molecular Photo-Recognition and Segregation at Solid Surface with Periodic Metal Nano-Architecture
Formation of Nanostructures at the Interface of Polymer Films: Time-Resolved Fluorescence Microspectroscopy
Clarification of Mechanisms of Cooperative Chemical Phenomena by Microspectroscopy in Bistable Systems
Study on Ionic-Liquid/Nanocrystal Interfacial Reaction Based on Single Particle and Single Molecule Spectroscopy
Construction of Nanostructures in Reaction Fields and Measurement of Reaction Dynamics at Solid-Liquid Interfaces by Use of Strong Magnetic Fields and Spin Chemistry
Asymmetric Potential Generation on a Substrate and Reaction Analysis by SECM/
AFM/Optical Microscopy
Control of Temporal Intermittence of Photoluminescence from Single Quantum Dots
Single Biocells / III:
Light Scattering Imaging and Femtosecond Nonlinear Processing of Single Living Cells
Super-resolution Infrared Microspectroscopy for Single Living Cells
3D Super-resolution Microspectroscopic Study on Environment-sensitive Photosynthetic Units
Photothermal and Photoinonization Spectroscopy on Single Living Cells
Fluorescence Lifetime Imaging Study on Single Living Cells in View of External and pH Effects
Photon Force Measurement on Single Living Cells and Their Interactions
Nonlinear Nano Vibrational Spectroscopy for Life Science
Matrix Spectroscopy for Non-invasive Evaluation of Cell Differentiation
Optical Trapping Study on Differentiation of Single ES Cells in Solution
Spectroscopy and Reaction of Gold Nanorods in Living Cells and Organisms
Laser-induced Injection and Plasmon Sensitization of Gold Nanoparticles in Chloroplasts
Fluorescence Correlation Spectroscopy on Molecular Diffusion in Single Living Cells
Active Surfaces / Volume 2:
Catalysts and Surfaces by Dynamic XAFS
Surface Reactions by Dynamic NEXAFS
Nuclear Wavepacket Dynamics in Ultrashort Pulse Induced Surface Photochemical Reactions
Ultrafast Near-Field Spectroscopy on Spatiotemporal Coherence of Elementary Excitations in Nanostructures
Real Time Observation of Surface Chemical Reaction by Nonlinear Spectroscopy
Quantum Dynamics and Control of Surface Ultra-Fast Processes
Dynamic Behavior of Active Ag species in NOx Reduction on Ag/Al2O3
Dynamic Behavior of Active Structures During Catalysis
Structures for Photocatalysis
Single Crystals / V:
Morphology Changes of Photochromic Single Crsytals
Ultra-Fine Structural Control of Organic Crystals Using Solid-State Polymerization Reactions
Temporal and Space Resolved Detection of Laser-Induced Crystallization Processes
Crystal Growth by Photo-Induced Intermolecular Interaction
Time-Resolved Structure Analysis of Photo-Induced Crystalline State Reaction with MSGC Detector
Reaction Dynamics Study of Single Crystalline Photochromisim of Disulfone Complexes
Measurements and Dynamics of Intercalation into Organic Layered Crystals
Morphology Change and Structure Control of Organic Cocrystals
Spectroscopic Methods for Nano Interfaces / Volume 1:
Fluorescence and Raman Spectroscopy Coupled with Scanning Tunneling Microscopy
Real-Time Measurement of Solid/Liquid Interfacial Electron Transfer Dynamics by Nonlinear Spectroscopy
30.

図書

図書
Jin Zhong Zhang
出版情報: Singapore : World Scientific, c2009  xvi, 383 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
Introduction / 1:
Spectroscopic Techniques for Studying Optical Properties of Nanomaterials / 2:
UV-visible electronic absorption spectroscopy / 2.1:
Operating principle: Beer's law / 2.1.1:
Instrument: UV-visible spectrometer / 2.1.2:
Spectrum and interpretation / 2.1.3:
Phololuminescence and electroluminescence spectroscopy / 2.2:
Operating principle / 2.2.1:
Instrumentation: spectrofluorometer / 2.2.2:
Electroluminescence (EL) / 2.2.3:
Infrared (IR) and Raman vibrational spectroscopy / 2.3:
IR spectroscopy / 2.3.1:
Raman spectroscopy / 2.3.2:
Time-resolved optical spectroscopy / 2.4:
Nonlinear optical spectroscopy: harmonic generation and up-conversion / 2.5:
Single nanoparticle and single molecule spectroscopy / 2.6:
Dynamic light scattering (DLS) / 2.7:
Summary / 2.8:
Other Experimental Techniques: Electron Microscopy and X-ray / 3:
Microscopy: AFM, STM, SEM and TEM / 3.1:
Scanning probe microscopy (SPM): AFM and STM / 3.1.1:
Electron microscopy: SEM and TEM / 3.1.2:
X-ray: XRD, XPS, and XAES, SAXS / 3.2:
Electrochemistry and photoelectrochemistry / 3.3:
Nuclear magnetic resonance (NMR) and electron spin resonance (ESR) / 3.4:
Nuclear magnetic resonance (NMR) / 3.4.1:
Electron spin resonance (ESR) / 3.4.2:
Synthesis and Fabrication of Nanomaterials / 3.5:
Solution chemical methods / 4.1:
General principle for solution-based colloidal nanoparticle synthesis / 4.1.1:
Metal nanomaterials / 4.1.2:
Semiconductor nanomaterials / 4.1.3:
Metal oxides / 4.1.4:
Complex nanostnictures / 4.1.5:
Composite and hetero-junction nanomaterials / 4.1.6:
Gas or vapor-based methods of synthesis: CVD, MOCVD and MBE / 4.2:
Metals / 4.2.1:
Semiconductors / 4.2.2:
Complex and composite structures / 4.2.3:
Nanolithography techniques / 4.3:
Bioconjugation / 4.4:
Toxicity and green chemistry approaches for synthesis / 4.5:
Optical Properties of Semiconductor Nanomaterials / 4.6:
Some basic concepts about semiconductors / 5.1:
Crystal structure and phonons / 5.1.1:
Electronic energy bands and bandgap / 5.1.2:
Electron and hole effective masses / 5.1.3:
Density-of-states, Fermi energy, and carrier concentration / 5.1.4:
Charge carrier mobility and conductivity / 5.1.5:
Exciton, exciton binding energy, and exciton Bohr radius / 5.1.6:
Fundamental optical absorption due to electronic transitions / 5.1.7:
Trap stales and large surface-to-volume ratio / 5.1.8:
Energy levels and density of states in reduced dimension systems / 5.2:
Energy levels / 5.2.1:
Density of states (DOS) in nanomaterials / 5.2.2:
Size dependence of absorption coefficient, oscillator strength, and exciton lifetime / 5.2.3:
Electronic structure and electronic properties / 5.3:
Electronic structure of nanomaterials / 5.3.1:
Electron-phonon interaction / 5.3.2:
Optical properties of semiconductor nanomaterials / 5.4:
Absorption: direct and indirect bandgap transitions / 5.4.1:
Emission: photoluminescence and Raman scattering / 5.4.2:
Emission: chemiluminescence and electroluminescence / 5.4.3:
Optical properties of assembled nanostructures: interaction between nanoparticles / 5.4.4:
Shape dependent optical properties / 5.4.5:
Doped semiconductors: absorption and luminescence / 5.5:
Nonlinear optical properties / 5.6:
Absorption saturation and harmonic generation / 5.6.1:
luminescence up-conversion / 5.6.2:
Optical properties of single particles / 5.7:
Optical Properties of Metal Oxide Nanomaterials / 5.8:
Optical absorption / 6.1:
Optical emission / 6.2:
Other optical properties: doped and sensitized metal oxides / 6.3:
Nonlinear optical properties: luminescence up-conversion (LUC) / 6.4:
Optical Properties of Metal Nanomaterials / 6.5:
Strong absorption and lack of photoemission / 7.1:
Surface plasmon resonance (SPR) / 7.2:
Correlation between structure and SPR: a theoretical perspective / 7.3:
Effects of size and surface on SPR of metal nanoparticles / 7.3.1:
The effect of shape on SPR / 7.3.2:
The effect of substrate on SPR / 7.3.3:
Effect of particle-particle interaction on SPR / 7.3.4:
Surface-eruHanced Raman scattering (SERS) / 7.4:
Background of SERS / 7.4.1:
Mechanism of SERS / 7.4.2:
Distance dependence of SERS / 7.4.3:
Location and orientation dependence of SERS / 7.4.4:
Dependence of SERS on substrate / 7.4.5:
Single nanoparticle and single molecule SERS / 7.4.6:
Optical Properties of Composite Nanostructures / 7.5:
Inorganic semiconductor-insulator and semiconductor-semiconductor / 8.1:
Inorganic metal-insulator / 8.2:
Inorganic semiconductor-metal / 8.3:
Inorganic-organic (polymer) / 8.4:
Nonconjugated polymers / 8.4.1:
Conjugated polymers / 8.4.2:
Inorganic-biological materials / 8.5:
Charge Carrier Dynamics in Nanomaterials / 8.6:
Experimental techniques for dynamics studies in nanomaterials / 9.1:
Electron and photon relaxation dynamics in metal nanomaterials / 9.2:
Electronic dephasing and spectral line shape / 9.2.1:
Electronic relaxation due to electron-phonon interaction / 9.2.2:
Photon relaxation dynamics / 9.2.3:
Charge carrier dynamics in semiconductor nanomaterials / 9.3:
Spectral line width and electronic dephasing / 9.3.1:
Intraband charge carrier energy relaxation / 9.3.2:
Charge carrier trapping / 9.3.3:
Interband electron-hole recombination or single excitonic delay / 9.3.4:
Charge earner dynamics in doped semiconductor nanomaterials / 9.3.5:
Nonlinear charge carrier dynamics / 9.3.6:
Charge carrier dynamics in metal oxide and insulator nanomaterials / 9.4:
Photoinduced charge transfer dynamics / 9.5:
Applications of Optical Properties of Nanomaterials / 9.6:
Chemical and biomedical detection, imaging and therapy / 10.1:
Luminescence-based detection / 10.1.1:
Surface plasmon resonance (SPR) detection / 10.1.2:
SERS for detection / 10.1.3:
Chemical and biochemical imaging / 10.1.4:
Biomedical therapy / 10.1.5:
Energy conversion: PV and PEC / 10.2:
PV solar cells / 10.2.1:
Photoelectrochemical cells (PEC) / 10.2.2:
Environmental protection: photocatalytic and photochemical reactions / 10.3:
Lasers, LEDs, and solid state lighting / 10.4:
Lasing and lasers / 10.4.1:
Light emitting diodes (LEDs) / 10.4.2:
Solid state lighting: ACPEL / 10.4.3:
Optical detectors / 10.4.4:
Optical filters: photonic bandgap materials or photonic crystals / 10.5:
Index / 10.6:
Preface
Acknowledgments
Introduction / 1:
31.

図書

図書
edited by Sang-Eon Park ... [et al.]
出版情報: Amsterdam : Elsevier, 2003  xxiii, 823 p. ; 25 cm
シリーズ名: Studies in surface science and catalysis ; v. 146
所蔵情報: loading…
目次情報: 続きを見る
Synthesis and materials / I:
Characterization / II:
Modification and composite / III:
Application and catalysis / IV:
Synthesis and materials / I:
Characterization / II:
Modification and composite / III:
32.

図書

図書
edited by Toshiaki Enoki, Tsuneya Ando
出版情報: Singapore : Pan Stanford, c2013  xv, 460 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction
Theory of Electronic States and Transport in Graphene
Experimental Approach to Graphene Electron Transport for Device Applications
Electronic Properties of Nanographene
Spin Structure of Polycyclic Aromatic Hydrocarbons (PAHs)
Experimental Approach to Electronic and Magnetic Properties of Nanographene
Index
Introduction
Theory of Electronic States and Transport in Graphene
Experimental Approach to Graphene Electron Transport for Device Applications
33.

図書

図書
edited by Mahmood Aliofkhazraei ... [et al.]
出版情報: Boca Raton, Fla. : CRC Press, Taylor & Francis Group, c2016  xviii, 583 p. ; 29 cm
シリーズ名: Graphene science handbook ; [v. 2]
所蔵情報: loading…
34.

図書

図書
edited by Mahmood Aliofkhazraei ... [et al.]
出版情報: Boca Raton, Fla. : CRC Press, Taylor & Francis Group, c2016  xv, 527 p. ; 29 cm
シリーズ名: Graphene science handbook ; [v. 4]
所蔵情報: loading…
35.

図書

図書
edited by Mahmood Aliofkhazraei ... [et al.]
出版情報: Boca Raton, Fla. : CRC Press, Taylor & Francis Group, c2016  xvii, 505 p. ; 29 cm
シリーズ名: Graphene science handbook ; [v. 5]
所蔵情報: loading…
36.

図書

図書
Adisorn Tuantranont
出版情報: Berlin : Springer, c2013  x, 285 p. ; 25 cm
シリーズ名: Springer series on chemical sensors and biosensors : methods and applications / Otto S. Wolfbeis series editor ; 14
所蔵情報: loading…
37.

図書

図書
Vinicius Cabral and Renan Silva, editors
出版情報: New York : Nova Science Publishers, c2010  xvi, 412 p. ; 26 cm
シリーズ名: Nanotechnology science and technology series
所蔵情報: loading…
目次情報: 続きを見る
Preface
Theory of the Magnetic Pulsed Compaction of Nanosized Powders
TiO2 Nanocrystals: Phase Selective & Morphology Controllable Synthesis & their Enhanced Functionality via Doping
Mechanical & Dynamical Principles of Protein Nanomotors: The Key to Nano-Engineering Applications
Nanocomposite Metal Oxides: An Easy Way to Design Catalysts with Desired Functional Properties
Mechanism of Formation of Oxide Nanopowders by Anodic Oxidation of Metals in Molten Salts
Size-Controllable Synthesis & Characterization of Wide Band Gap Semiconductor Oxide Nanoparticles
Nanostructured Catalysts: Synthesis, Characterization & Properties of Vanadia-Titania/SBA-15 Catalysts for SCR Application
Evaluation of Methods for Stiffness Predictions of Polymer Based Nanocomposites: Theoretical Background & Example of Application (PCL-Clay Nanocomposites)
Development of Novel but Simple Aqueous Solution Based Chemical Methodologies for Synthesis of Pure Nanostructured a-Fe2O3 Powders & the Effect of Nanostructure on the Electrical & Magnetic Properties
Functional Surface Development by Nano Plastic Forming
Index
Preface
Theory of the Magnetic Pulsed Compaction of Nanosized Powders
TiO2 Nanocrystals: Phase Selective & Morphology Controllable Synthesis & their Enhanced Functionality via Doping
38.

図書

図書
Amanda S. Harper-Leatherman, Camille M. Solbrig, editor[s]
出版情報: Washington, DC : American Chemical Society , [New York] : Distributed in print by Oxford University Press, c2014  x, 159 p. ; 24 cm
シリーズ名: ACS symposium series ; 1183
所蔵情報: loading…
39.

図書

図書
Oskar Paris, editor
出版情報: Wien : Springer, c2016  226 p. ; 24 cm
シリーズ名: CISM courses and lectures ; 563
所蔵情報: loading…
40.

図書

図書
Reshef Tenne
出版情報: Singapore : World Scietifc, c2013  xiii, 312 p. ; 29 cm
シリーズ名: World scientific series in nanoscience and nanotechnology ; v. 5
所蔵情報: loading…
41.

図書

図書
edited Ying (Ian) Chen
出版情報: Boca Raton : CRC Press, Taylor & Francis Group, 2015  xvii, 622 p. ; 26 cm
所蔵情報: loading…
42.

図書

図書
editors, Menka Jain ... [et al.]
出版情報: Warrendale, Pa. : Materials Research Society , Cambridge ; New York : Cambridge University Press, 2012  xi, 173 p. ; 24 cm
シリーズ名: Materials Research Society symposium proceedings ; v.1449
所蔵情報: loading…
43.

図書

図書
editors, Yoshihisa Fujisaki ... [et al.]
出版情報: Warrendale, Pa. : Materials Research Society , Cambridge ; New York : Cambridge University Press, 2012  ix, 197 p. ; 24 cm
シリーズ名: Materials Research Society symposium proceedings ; v.1430
所蔵情報: loading…
44.

図書

図書
edited by Karthikeyan Subramani, Waqar Ahmed, James K. Hartsfield, Jr.
出版情報: Waltham, Mass. : William Andrew, 2013  xxi, 519 p. ; 25 cm
シリーズ名: Micro & nano technologies
所蔵情報: loading…
目次情報: 続きを見る
Nanotechnology in Orthodontics
Carbon nanotube coatings in implant dentistry and orthodontic miniimplants
Carbon nanotube composites for bone & implant dentistry; Nanostructured ceramics for
Bone regeneration in oral and maxillofacial complex; Antimicrobial
Silver Colloidal NanoParticles for Denture Base Resin and implant dentistry; Mesoporous silica nanoParticles for tooth bleaching
Nanobacteria and Dental Practice
Nanotechnology/bioactive glass nanoParticles and its dental, periodontal applications; Saliva as an emerging biofluid for clinical applications; Future Nano Dentistry
Silica nanotechnology and applications in bone biology and periodontal applications; NanoParticles and the control of oral biofilms; Biomimetics
Using nanotechnology/nanoParticles for dental tissue regeneration
Quantum dots in dentistry; Nano chip for oral cancer diagnosis
Nanotechnology in prosthodontics - I
Nanotechnology in prosthodontics - II
NanoParticles for Glass Ionomer
Cements (GICs); Nanomaterials in preventive dentistry; NanoParticle
Applications for periodontitis treatment (Nanomaterials in Periodontics)
Nanotechnology in dental implants
Nanotechnology in dental adhesives
Nanotechnology in Orthodontics
Carbon nanotube coatings in implant dentistry and orthodontic miniimplants
Carbon nanotube composites for bone & implant dentistry; Nanostructured ceramics for
45.

図書

図書
volume editors, Markus Albrecht, F. Ekkehardt Hahn ; with contributions by D. Ajami ... [et al.]
出版情報: Heidelberg : Springer, c2012  xi, 173 p. ; 24 cm
シリーズ名: Topics in current chemistry = Fortschritte der chemischen Forschung ; 319
所蔵情報: loading…
46.

図書

図書
edited by Kun'ichi Miyazawa
出版情報: Singapore : Pan Stanford, c2012  vi, 235 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction to Fullerene Nanowhiskers / Kun'ichi Miyazawa1:
Growth, Structures, and Mechanical Properties of C60 Nanowhiskers / Masaru Tachibana2:
Investigation of the Growth Mechanism of C60 Fullerene Nanowhiskers / Kayoko Hotta3:
Preparation and Characterization of Fullerene Derivatives and Their Nanowhiskers / Shigeo Nakamura ; Tadahiko Mashino4:
Vertically Aligned C60 Microtube Array / Cha Seung II5:
Metal-Ion-Incorporated Fullerene Nanowhiskers and Size-Tunable Nanosheets / Marappan Sathish6:
Fabrication and Characterization of C60 Fine Crystals and Their Hybridization / Akito Masuhara ; Zhenquan Tan ; Hitoshi Kasai ; Hachiro Nakanishi ; Hidetoshi Oikawa7:
In Situ Transmission Electron Microscopy of Fullerene Nanowhiskers and Related Carbon Nanomaterials / Tokushi Kizuka8:
Mechanical Bend Testing of Fullerene Nanowhiskers / Stepan Lucyszyn ; Michael P. Larsson9:
Magnetic Alignment of Fullerene Nanowhiskers / Guangzhe Piao ; Fumiko Kimura ; Tsunehisa Kimura10:
Optical Properties of Fullerene Nanowhiskers / Kiyoto Matsuishi11:
Surface Nanocharacterization of Fullerene Nanowhiskers / Daisuke Fujita ; Mingsheng Xu12:
Structural and Thermodynamic Properties of Fullerene Nanowhiskers / Hideaki Kitazawa ; Kenjiro Hashi13:
High-Temperature Heat Treatment of Fullerene Nanofibers / Ryoei Kato ; Toshiyuki Nishimura ; Zheng-ming Wang14:
Electronics Device Application of Fullerene Nanowhiskers / Yuichi Ochiai ; Nobuyuki Aoki ; Jonathan Paul Bird15:
Index
Introduction to Fullerene Nanowhiskers / Kun'ichi Miyazawa1:
Growth, Structures, and Mechanical Properties of C60 Nanowhiskers / Masaru Tachibana2:
Investigation of the Growth Mechanism of C60 Fullerene Nanowhiskers / Kayoko Hotta3:
47.

図書

図書
Dmitri Kilin, editor ; sponsored by the ACS Division of Computers Chemistry
出版情報: Washington, DC : American Chemical Society , [New York] : Distributed in print by Oxford University Press, c2015  xii, 282 p., 3 p. of colored plates ; 24 cm
シリーズ名: ACS symposium series ; 1196
所蔵情報: loading…
48.

図書

図書
Jingbo Louise Liu, Sajid Bashir, editor[s] ; sponsored by the ACS Division of Colloid and Surface Chemistry
出版情報: Washington, DC : American Chemical Society , [Oxford] : Distributed in print by Oxford University Press, c2015  xii, 287 p., 12 p. of colored plates ; 24 cm
シリーズ名: ACS symposium series ; 1213
所蔵情報: loading…
49.

図書

図書
edited by Sumit Saxena
出版情報: Singapore : Pan Stanford Publishing, c2016  vii, 129 p. ; 24 cm
所蔵情報: loading…
50.

図書

図書
[edited by] D.L. Mills, J.A.C. Bland
出版情報: Amsterdam : Elsevier, 2006  xiii, 334 p. ; 25 cm
シリーズ名: Contemporary concepts of condensed matter science
所蔵情報: loading…
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼