close
1.

図書

図書
Clarence W. de Silva
出版情報: Boca Raton, FL : CRC Press, c2000  943 p. ; 27 cm
所蔵情報: loading…
目次情報: 続きを見る
Vibration Engineering / Chapter 1:
Study of Vibration / 1.1:
Application Areas / 1.2:
History of Vibration / 1.3:
Organization of the Book / 1.4:
Problems
References and Further Reading
Author's Work
Other Useful Publications
Time Response / Chapter 2:
Undamped Oscillator / 2.1:
Energy Storage Elements / 2.1.1:
Conservation of Energy / 2.1.2:
Free Response / 2.1.3:
Heavy Springs / 2.2:
Kinetic Energy Equivalence / 2.2.1:
Oscillations in Fluid Systems / 2.3:
Damped Simple Oscillator / 2.4:
Case 1: Underdamped Motion / 2.4.1:
Logarithmic Decrement Method / 2.4.2:
Case 2: Overdamped Motion / 2.4.3:
Case 3: Critically Damped Motion / 2.4.4:
Justification for the Trial Solution / 2.4.5:
Stability and Speed of Response / 2.4.6:
Forced Response / 2.5:
Impulse Response Function / 2.5.1:
Response to a Support Motion / 2.5.2:
Frequency Response / Chapter 3:
Response to Harmonic Excitations / 3.1:
Response Characteristics / 3.1.1:
Measurement of Damping Ratio (Q-Factor Method) / 3.1.2:
Transform Techniques / 3.2:
Transfer Function / 3.2.1:
Frequency-Response Function (Frequency-Transfer Function) / 3.2.2:
Transfer Function Matrix / 3.2.3:
Mechanical Impedance Approach / 3.3:
Interconnection Laws / 3.3.1:
Transmissibility Functions / 3.4:
Motion Transmissibility / 3.4.2:
General Case / 3.4.3:
Peak Values of Frequency-Response Functions / 3.4.4:
Receptance Method / 3.5:
Application of Receptance / 3.5.1:
Vibration Signal Analysis / Chapter 4:
Frequency Spectrum / 4.1:
Frequency / 4.1.1:
Amplitude Spectrum / 4.1.2:
Phase Angle / 4.1.3:
Phasor Representation of Harmonic Signals / 4.1.4:
RMS Amplitude Spectrum / 4.1.5:
One-Sided and Two-Sided Spectra / 4.1.6:
Complex Spectrum / 4.1.7:
Signal Types / 4.2:
Fourier Analysis / 4.3:
Fourier Integral Transform (FIT) / 4.3.1:
Fourier Series Expansion (FSE) / 4.3.2:
Discrete Fourier Transform (DFT) / 4.3.3:
Aliasing Distortion / 4.3.4:
Another Illustration of Aliasing / 4.3.5:
Analysis of Random Signals / 4.4:
Ergodic Random Signals / 4.4.1:
Correlation and Spectral Density / 4.4.2:
Frequency Response Using Digital Fourier Transform / 4.4.3:
Leakage (Truncation Error) / 4.4.4:
Coherence / 4.4.5:
Parseval's Theorem / 4.4.6:
Window Functions / 4.4.7:
Spectral Approach to Process Monitoring / 4.4.8:
Cepstrum / 4.4.9:
Other Topics of Signal Analysis / 4.5:
Bandwidth / 4.5.1:
Transmission Level of a Bandpass Filter / 4.5.2:
Effective Noise Bandwidth / 4.5.3:
Half-Power (or 3 dB) Bandwidth / 4.5.4:
Fourier Analysis Bandwidth / 4.5.5:
Resolution in Digital Fourier Results / 4.6:
Overlapped Processing / 4.7:
Order Analysis / 4.7.1:
Modal Analysis / Chapter 5:
Degrees of Freedom and Independent Coordinates / 5.1:
Nonholonomic Constraints / 5.1.1:
System Representation / 5.2:
Stiffness and Flexibility Matrices / 5.2.1:
Inertia Matrix / 5.2.2:
Direct Approach for Equations of Motion / 5.2.3:
Modal Vibrations / 5.3:
Orthogonality of Natural Modes / 5.4:
Modal Mass and Normalized Modal Vectors / 5.4.1:
Static Modes and Rigid Body Modes / 5.5:
Static Modes / 5.5.1:
Linear Independence of Modal Vectors / 5.5.2:
Modal Stiffness and Normalized Modal Vectors / 5.5.3:
Rigid Body Modes / 5.5.4:
Modal Matrix / 5.5.5:
Configuration Space and State Space / 5.5.6:
Other Modal Formulations / 5.6:
Non-Symmetric Modal Formulation / 5.6.1:
Transformed Symmetric Modal Formulation / 5.6.2:
Forced Vibration / 5.7:
Damped Systems / 5.8:
Proportional Damping / 5.8.1:
State-Space Approach / 5.9:
Mode Shapes of Nonoscillatory Systems / 5.9.1:
Mode Shapes of Oscillatory Systems / 5.9.3:
Distributed-Parameter Systems / Chapter 6:
Transverse Vibration of Cables / 6.1:
Wave Equation / 6.1.1:
General (Modal) Solution / 6.1.2:
Cable with Fixed Ends / 6.1.3:
Application of Initial Conditions / 6.1.4:
Longitudinal Vibration of Rods / 6.2:
Equation of Motion / 6.2.1:
Boundary Conditions / 6.2.2:
Torsional Vibration of Shafts / 6.3:
Shaft with Circular Cross Section / 6.3.1:
Torsional Vibration of Noncircular Shafts / 6.3.2:
Flexural Vibration of Beams / 6.4:
Governing Equation for Thin Beams / 6.4.1:
Free Vibration of a Simply Supported Beam / 6.4.2:
Orthogonality of Mode Shapes / 6.4.5:
Forced Bending Vibration / 6.4.6:
Bending Vibration of Beams with Axial Loads / 6.4.7:
Bending Vibration of Thick Beams / 6.4.8:
Use of the Energy Approach / 6.4.9:
Orthogonality with Inertial Boundary Conditions / 6.4.10:
Damped Continuous Systems / 6.5:
Modal Analysis of Damped Beams / 6.5.1:
Vibration of Membranes and Plates / 6.6:
Transverse Vibration of Membranes / 6.6.1:
Rectangular Membrane with Fixed Edges / 6.6.2:
Transverse Vibration of Thin Plates / 6.6.3:
Rectangular Plate with Simply Supported Edges / 6.6.4:
Damping / Chapter 7:
Types of Damping / 7.1:
Material (Internal) Damping / 7.1.1:
Structural Damping / 7.1.2:
Fluid Damping / 7.1.3:
Representation of Damping in Vibration Analysis / 7.2:
Equivalent Viscous Damping / 7.2.1:
Complex Stiffness / 7.2.2:
Loss Factor / 7.2.3:
Measurement of Damping / 7.3:
Step-Response Method / 7.3.1:
Hysteresis Loop Method / 7.3.3:
Magnification-Factor Method / 7.3.4:
Bandwidth Method / 7.3.5:
General Remarks / 7.3.6:
Interface Damping / 7.4:
Friction In Rotational Interfaces / 7.4.1:
Instability / 7.4.2:
Vibration Instrumentation / Chapter 8:
Vibration Exciters / 8.1:
Shaker Selection / 8.1.1:
Dynamics of Electromagnetic Shakers / 8.1.2:
Control System / 8.2:
Components of a Shaker Controller / 8.2.1:
Signal-Generating Equipment / 8.2.2:
Performance Specification / 8.3:
Parameters for Performance Specification / 8.3.1:
Linearity / 8.3.2:
Instrument Ratings / 8.3.3:
Accuracy and Precision / 8.3.4:
Motion Sensors and Transducers / 8.4:
Potentiometer / 8.4.1:
Variable-Inductance Transducers / 8.4.2:
Mutual-Induction Proximity Sensor / 8.4.3:
Self-Induction Transducers / 8.4.4:
Permanent-Magnet Transducers / 8.4.5:
AC Permanent-Magnet Tachometer / 8.4.6:
AC Induction Tachometer / 8.4.7:
Eddy Current Transducers / 8.4.8:
Variable-Capacitance Transducers / 8.4.9:
Piezoelectric Transducers / 8.4.10:
Torque, Force, and Other Sensors / 8.5:
Strain-Gage Sensors / 8.5.1:
Miscellaneous Sensors / 8.5.2:
Component Interconnection / 8.6:
Impedance Characteristics / 8.6.1:
Instrumentation Amplifier / 8.6.2:
Signal Conditioning and Modification / Chapter 9:
Amplifiers / 9.1:
Operational Amplifier / 9.1.1:
Use of Feedback in Op-amps / 9.1.2:
Voltage, Current, and Power Amplifiers / 9.1.3:
Instrumentation Amplifiers / 9.1.4:
Amplifier Performance Ratings
Analog Filters / 9.2:
Passive Filters and Active Filters / 9.2.1:
Low-Pass Filters / 9.2.2:
High-Pass Filters / 9.2.3:
Bandpass Filters / 9.2.4:
Band-Reject Filters / 9.2.5:
Modulators and Demodulators / 9.3:
Amplitude Modulation / 9.3.1:
Application of Amplitude Modulation / 9.3.2:
Demodulation / 9.3.3:
Analog/Digital Conversion / 9.4:
Digital-to-Analog Conversion (DAC) / 9.4.1:
Analog-to-Digital Conversion (ADC) / 9.4.2:
ADC Performance Characteristics / 9.4.3:
Sample-and-Hold (S/H) Circuitry / 9.4.4:
Multiplexers (MUX) / 9.4.5:
Digital Filters / 9.4.6:
Bridge Circuits / 9.5:
Wheatstone Bridge / 9.5.1:
Constant-Current Bridge / 9.5.2:
Bridge Amplifiers / 9.5.3:
Impedance Bridges / 9.5.4:
Linearizing Devices / 9.6:
Linearization by Software / 9.6.1:
Linearization by Hardware Logic / 9.6.2:
Analog Linearizing Circuitry / 9.6.3:
Offsetting Circuitry / 9.6.4:
Proportional-Output Circuitry / 9.6.5:
Miscellaneous Signal-Modification Circuitry / 9.7:
Phase Shifter / 9.7.1:
Voltage-to-Frequency Converter (VFC) / 9.7.2:
Frequency-to-Voltage Converter (FVC) / 9.7.3:
Voltage-to-Current Converter (VCC) / 9.7.4:
Peak-Hold Circuit / 9.7.5:
Signal Analyzers and Display Devices / 9.8:
Signal Analyzers / 9.8.1:
Oscilloscopes / 9.8.2:
Vibration Testing / Chapter 10:
Representation of a Vibration Environment / 10.1:
Test Signals / 10.1.1:
Deterministic Signal Representation / 10.1.2:
Stochastic Signal Representation / 10.1.3:
Frequency-Domain Representations / 10.1.4:
Response Spectrum / 10.1.5:
Comparison of Various Representations / 10.1.6:
Pretest Procedures / 10.2:
Purpose of Testing / 10.2.1:
Service Functions / 10.2.2:
Information Acquisition / 10.2.3:
Test-Program Planning / 10.2.4:
Pretest Inspection / 10.2.5:
Testing Procedures / 10.3:
Resonance Search / 10.3.1:
Methods of Determining Frequency-Response Functions / 10.3.2:
Resonance-Search Test Methods / 10.3.3:
Mechanical Aging / 10.3.4:
TRS Generation / 10.3.5:
Instrument Calibration / 10.3.6:
Test-Object Mounting / 10.3.7:
Test-Input Considerations / 10.3.8:
Product Qualification Testing / 10.4:
Distribution Qualification / 10.4.1:
Seismic Qualification / 10.4.2:
Test Preliminaries / 10.4.3:
Generation of RRS Specifications / 10.4.4:
Experimental Modal Analysis / Chapter 11:
Frequency-Domain Formulation / 11.1:
Principle of Reciprocity / 11.1.1:
Experimental Model Development / 11.2:
Extraction of the Time-Domain Model / 11.2.1:
Curve-Fitting of Transfer Functions / 11.3:
Problem Identification / 11.3.1:
Single-Degree-of-Freedom and Multi-Degree-of-Freedom Techniques / 11.3.2:
Single-Degree-of-Freedom Parameter Extraction in the Frequency Domain / 11.3.3:
Multi-Degree-of-Freedom Curve Fitting / 11.3.4:
A Comment on Static Modes and Rigid Body Modes / 11.3.5:
Residue Extraction / 11.3.6:
Laboratory Experiments / 11.4:
Lumped-Parameter System / 11.4.1:
Distributed-Parameter System / 11.4.2:
Commercial EMA Systems / 11.5:
System Configuration / 11.5.1:
Vibration Design and Control / Chapter 12:
Shock and Vibration
Specification of Vibration Limits / 12.1:
Peak Level Specification / 12.1.1:
RMS Value Specification / 12.1.2:
Frequency-Domain Specification / 12.1.3:
Vibration Isolation / 12.2:
Design Considerations / 12.2.1:
Vibration Isolation of Flexible Systems / 12.2.2:
Balancing of Rotating Machinery / 12.3:
Static Balancing / 12.3.1:
Complex Number/Vector Approach / 12.3.2:
Dynamic (Two-Plane) Balancing / 12.3.3:
Experimental Procedure of Balancing / 12.3.4:
Balancing of Reciprocating Machines / 12.4:
Single-Cylinder Engine / 12.4.1:
Balancing the Inertia Load of the Piston / 12.4.2:
Multicylinder Engines / 12.4.3:
Combustion/Pressure Load / 12.4.4:
Whirling of Shafts / 12.5:
Equations of Motion / 12.5.1:
Steady-State Whirling / 12.5.2:
Self-Excited Vibrations / 12.5.3:
Design Through Modal Testing / 12.6:
Component Modification / 12.6.1:
Substructuring / 12.6.2:
Passive Control of Vibration / 12.7:
Undamped Vibration Absorber / 12.7.1:
Damped Vibration Absorber / 12.7.2:
Vibration Dampers / 12.7.3:
Active Control of Vibration / 12.8:
Active Control System / 12.8.1:
Control Techniques / 12.8.2:
Active Control of Saw Blade Vibration / 12.8.3:
Control of Beam Vibrations / 12.9:
State-Space Model of Beam Dynamics / 12.9.1:
Control Problem / 12.9.2:
Use of Linear Dampers / 12.9.3:
Dynamic Models and Analogies / Appendix A:
Model Development / A.1:
Analogies / A.2:
Mechanical Elements / A.3:
Mass (Inertia) Element / A.3.1:
Spring (Stiffness) Element / A.3.2:
Electrical Elements / A.4:
Capacitor Element / A.4.1:
Inductor Element / A.4.2:
Thermal Elements / A.5:
Thermal Capacitor / A.5.1:
Thermal Resistance / A.5.2:
Fluid Elements / A.6:
Fluid Capacitor / A.6.1:
Fluid Inertor / A.6.2:
Fluid Resistance / A.6.3:
Natural Oscillations / A.6.4:
State-Space Models / A.7:
Linearization / A.7.1:
Some Formal Definitions / A.7.2:
Illustrative Example / A.7.4:
Causality and Physical Realizability / A.7.5:
Newtonian and Lagrangian Mechanics / Appendix B:
Vector Kinematics / B.1:
Euler's Theorem / B.1.1:
Angular Velocity and Velocity at a Point of a Rigid Body / B.1.2:
Rates of Unit Vectors Along Axes of Rotating Frames / B.1.3:
Acceleration Expressed in Rotating Frames / B.1.4:
Newtonian (Vector) Mechanics / B.2:
Frames of Reference Rotating at Angular Velocity [omega] / B.2.1:
Newton's Second Law for a Particle of Mass m / B.2.2:
Second Law for a System of Particles - Rigidly or Flexibly Connected / B.2.3:
Rigid Body Dynamics - Inertia Matrix and Angular Momentum / B.2.4:
Manipulation of Inertia Matrix / B.2.5:
Euler's Equations (for a Rigid Body Rotating at [omega]) / B.2.6:
Euler's Angles / B.2.7:
Lagrangian Mechanics / B.3:
Kinetic Energy and Kinetic Coenergy / B.3.1:
Work and Potential Energy / B.3.2:
Holonomic Systems, Generalized Coordinates, and Degrees of Freedom / B.3.3:
Hamilton's Principle / B.3.4:
Lagrange's Equations / B.3.5:
Example
Review of Linear Algebra / Appendix C:
Vectors and Matrices / C.1:
Vector-Matrix Algebra / C.2:
Matrix Addition and Subtraction / C.2.1:
Null Matrix / C.2.2:
Matrix Multiplication / C.2.3:
Identity Matrix / C.2.4:
Matrix Inverse / C.3:
Matrix Transpose / C.3.1:
Trace of a Matrix / C.3.2:
Determinant of a Matrix / C.3.3:
Adjoint of a Matrix / C.3.4:
Inverse of a Matrix / C.3.5:
Vector Spaces / C.4:
Field (F) / C.4.1:
Vector Space (L) / C.4.2:
Subspace T of L / C.4.3:
Linear Dependence / C.4.4:
Basis and Dimension of a Vector Space / C.4.5:
Inner Product / C.4.6:
Norm / C.4.7:
Gram-Schmidt Orthogonalization / C.4.8:
Modified Gram-Schmidt Procedure / C.4.9:
Determinants / C.5:
Properties of Determinant of a Matrix / C.5.1:
Rank of a Matrix / C.5.2:
System of Linear Equations / C.6:
References
Digital Fourier Analysis and FFT / Appendix D:
Unification of the Three Fourier Transform Types / D.1:
Relationship Between DFT and FIT / D.1.1:
Relationship Between DFT and FSE / D.1.2:
Fast Fourier Transform (FFT) / D.2:
Development of the Radix-Two FFT Algorithm / D.2.1:
The Radix-Two FFT Procedure / D.2.2:
Discrete Correlation and Convolution / D.2.3:
Discrete Correlation / D.3.1:
Digital Fourier Analysis Procedures / D.4:
Fourier Transform Using DFT / D.4.1:
Inverse DFT Using DFT / D.4.2:
Simultaneous DFT of Two Real Data Records / D.4.3:
Reduction of Computation Time for a Real Data Record / D.4.4:
Convolution of Finite Duration Signals Using DFT / D.4.5:
Reliability Considerations for Multicomponent Units / Appendix E:
Failure Analysis / E.1:
Reliability / E.1.1:
Unreliability / E.1.2:
Inclusion-Exclusion Formula / E.1.3:
Bayes' Theorem / E.2:
Product Rule for Independent Events / E.2.1:
Failure Rate / E.2.2:
Product Rule for Reliability / E.2.3:
Answers to Numerical Problems
Index
Vibration Engineering / Chapter 1:
Study of Vibration / 1.1:
Application Areas / 1.2:
2.

図書

図書
editors, C. W. de Silva and M. H. Hamza
出版情報: Anaheim, Calif. : IASTED-ACTA Press, [1995]  297 p. ; 28 cm
所蔵情報: loading…
3.

図書

図書
sponsored by the Dynamic Systems and Control Division, ASME ; edited by C.W. de Silva, R. Shoureshi
出版情報: New York, N.Y. : American Society of Mechanical Engineers, c1993  v, 157 p. ; ill. ; 28 cm
シリーズ名: DSC ; vol. 48
所蔵情報: loading…
4.

図書

図書
sponsored by the Dynamic Systems and Control Division, ASME ; edited by R. Shoureshi, C.W. de Silva
出版情報: New York, N.Y. : The Society, c1992  v, 127 p. ; 28 cm
シリーズ名: DSC ; vol. 23
所蔵情報: loading…
5.

図書

図書
Clarence W. de Silva
出版情報: Boca Raton, Fla. : CRC Press, c2007  671 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Control, Instrumentation, and Design / 1:
Introduction / 1.1:
Control Engineering / 1.2:
Instrumentation and Design / 1.2.1:
Modeling and Design / 1.2.2:
Control System Architectures / 1.3:
Feedback Control with PID Action / 1.3.1:
Digital Control / 1.3.2:
Feed-Forward Control / 1.3.3:
Programmable Logic Controllers / 1.3.4:
PLC Hardware / 1.3.4.1:
Distributed Control / 1.3.5:
A Networked Application / 1.3.5.1:
Hierarchical Control / 1.3.6:
Organization of the Book / 1.4:
Problems
Component Interconnection and Signal Conditioning / 2:
Component Interconnection / 2.1:
Impedance Characteristics / 2.2:
Cascade Connection of Devices / 2.2.1:
Impedance Matching / 2.2.2:
Impedance Matching in Mechanical Systems / 2.2.3:
Amplifiers / 2.3:
Operational Amplifier / 2.3.1:
Use of Feedback in Op-Amps / 2.3.1.1:
Voltage, Current, and Power Amplifiers / 2.3.2:
Instrumentation Amplifiers / 2.3.3:
Differential Amplifier / 2.3.3.1:
Common Mode / 2.3.3.2:
Amplifier Performance Ratings / 2.3.4:
Common-Mode Rejection Ratio / 2.3.4.1:
AC-Coupled Amplifiers / 2.3.4.2:
Ground-Loop Noise / 2.3.5:
Analog Filters / 2.4:
Passive Filters and Active Filters / 2.4.1:
Number of Poles / 2.4.1.1:
Low-Pass Filters / 2.4.2:
Low-Pass Butterworth Filter / 2.4.2.1:
High-Pass Filters / 2.4.3:
Band-Pass Filters / 2.4.4:
Resonance-Type Band-Pass Filters / 2.4.4.1:
Band-Reject Filters / 2.4.5:
Modulators and Demodulators / 2.5:
Amplitude Modulation / 2.5.1:
Modulation Theorem / 2.5.1.1:
Side Frequencies and Side Bands / 2.5.1.2:
Application of Amplitude Modulation / 2.5.2:
Fault Detection and Diagnosis / 2.5.2.1:
Demodulation / 2.5.3:
Analog-Digital Conversion / 2.6:
Digital to Analog Conversion / 2.6.1:
Weighted Resistor DAC / 2.6.1.1:
Ladder DAC / 2.6.1.2:
DAC Error Sources / 2.6.1.3:
Analog to Digital Conversion / 2.6.2:
Successive Approximation ADC / 2.6.2.1:
Dual-Slope ADC / 2.6.2.2:
Counter ADC / 2.6.2.3:
ADC Performance Characteristics / 2.6.2.4:
Sample-and-Hold Circuitry / 2.7:
Multiplexers / 2.8:
Analog Multiplexers / 2.8.1:
Digital Multiplexers / 2.8.2:
Digital Filters / 2.9:
Software Implementation and Hardware Implementation / 2.9.1:
Bridge Circuits / 2.10:
Wheatstone Bridge / 2.10.1:
Constant-Current Bridge / 2.10.2:
Hardware Linearization of Bridge Outputs / 2.10.3:
Bridge Amplifiers / 2.10.4:
Half-Bridge Circuits / 2.10.5:
Impedance Bridges / 2.10.6:
Owen Bridge / 2.10.6.1:
Wien-Bridge Oscillator / 2.10.6.2:
Linearizing Devices / 2.11:
Linearization by Software / 2.11.1:
Linearization by Hardware Logic / 2.11.2:
Analog Linearizing Circuitry / 2.11.3:
Offsetting Circuitry / 2.11.4:
Proportional-Output Circuitry / 2.11.5:
Curve-Shaping Circuitry / 2.11.6:
Miscellaneous Signal-Modification Circuitry / 2.12:
Phase Shifters / 2.12.1:
Voltage-to-Frequency Converters / 2.12.2:
Frequency-to-Voltage Converter / 2.12.3:
Voltage-to-Current Converter / 2.12.4:
Peak-Hold Circuits / 2.12.5:
Signal Analyzers and Display Devices / 2.13:
Signal Analyzers / 2.13.1:
Oscilloscopes / 2.13.2:
Triggering / 2.13.2.1:
Lissajous Patterns / 2.13.2.2:
Digital Oscilloscopes / 2.13.2.3:
Performance Specification and Analysis / 3:
Parameters for Performance Specification / 3.1:
Perfect Measurement Device / 3.1.1:
Time-Domain Specifications / 3.2:
Rise Time / 3.2.1:
Delay Time / 3.2.2:
Peak Time / 3.2.3:
Settling Time / 3.2.4:
Percentage Overshoot / 3.2.5:
Steady-State Error / 3.2.6:
Simple Oscillator Model / 3.2.7:
Stability and Speed of Response / 3.2.8:
Frequency-Domain Specifications / 3.3:
Gain Margin and Phase Margin / 3.3.1:
Linearity / 3.3.2:
Saturation / 3.4.1:
Dead Zone / 3.4.2:
Hysteresis / 3.4.3:
The Jump Phenomenon / 3.4.4:
Limit Cycles / 3.4.5:
Frequency Creation / 3.4.6:
Instrument Ratings / 3.5:
Rating Parameters / 3.5.1:
Bandwidth Design / 3.6:
Bandwidth / 3.6.1:
Transmission Level of a Band-Pass Filter / 3.6.1.1:
Effective Noise Bandwidth / 3.6.1.2:
Half-Power (or 3dB) Bandwidth / 3.6.1.3:
Fourier Analysis Bandwidth / 3.6.1.4:
Useful Frequency Range / 3.6.1.5:
Instrument Bandwidth / 3.6.1.6:
Control Bandwidth / 3.6.1.7:
Static Gain / 3.6.2:
Aliasing Distortion due to Signal Sampling / 3.7:
Sampling Theorem / 3.7.1:
Antialiasing Filter / 3.7.2:
Another Illustration of Aliasing / 3.7.3:
Bandwidth Design of a Control System / 3.8:
Comment about Control Cycle Time / 3.8.1:
Instrument Error Analysis / 3.9:
Statistical Representation / 3.9.1:
Accuracy and Precision / 3.9.2:
Error Combination / 3.9.3:
Absolute Error / 3.9.3.1:
SRSS Error / 3.9.3.2:
Statistical Process Control / 3.10:
Control Limits or Action Lines / 3.10.1:
Steps of SPC / 3.10.2:
Analog Sensors and Transducers / 4:
Terminology / 4.1:
Motion Transducers / 4.1.1:
Potentiometer / 4.2:
Rotatory Potentiometers / 4.2.1:
Loading Nonlinearity / 4.2.1.1:
Performance Considerations / 4.2.2:
Optical Potentiometer / 4.2.3:
Variable-Inductance Transducers / 4.3:
Mutual-Induction Transducers / 4.3.1:
Linear-Variable Differential Transformer/Transducer / 4.3.2:
Phase Shift and Null Voltage / 4.3.2.1:
Signal Conditioning / 4.3.2.2:
Rotatory-Variable Differential Transformer/Transducer / 4.3.3:
Mutual-Induction Proximity Sensor / 4.3.4:
Resolver / 4.3.5:
Resolver with Rotor Output / 4.3.5.1:
Synchro Transformer / 4.3.6:
Self-Induction Transducers / 4.3.7:
Permanent-Magnet Transducers / 4.4:
DC Tachometer / 4.4.1:
Electronic Commutation / 4.4.1.1:
Modeling and Design Example / 4.4.1.2:
Loading Considerations / 4.4.1.3:
Permanent-Magnet AC Tachometer / 4.4.2:
AC Induction Tachometer / 4.4.3:
Eddy Current Transducers / 4.4.4:
Variable-Capacitance Transducers / 4.5:
Capacitive Rotation Sensor / 4.5.1:
Capacitive Displacement Sensor / 4.5.2:
Capacitive Angular Velocity Sensor / 4.5.3:
Capacitance Bridge Circuit / 4.5.4:
Differential (Push-PuU) Displacement Sensor / 4.5.5:
Piezoelectric Sensors / 4.6:
Sensitivity / 4.6.1:
Accelerometers / 4.6.2:
Piezoelectric Accelerometer / 4.6.3:
Charge Amplifier / 4.6.4:
Effort Sensors / 4.7:
Force Causality Issues / 4.7.1:
Force-Motion Causality / 4.7.1.1:
Physical Realizability / 4.7.1.2:
Force Control Problems / 4.7.2:
Force Feedback Control / 4.7.2.1:
Feedforward Force Control / 4.7.2.2:
Impedance Control / 4.7.3:
Force Sensor Location / 4.7.4:
Strain Gages / 4.8:
Equations for Strain-Gage Measurements / 4.8.1:
Bridge Sensitivity / 4.8.1.1:
The Bridge Constant / 4.8.1.2:
The Calibration Constant / 4.8.1.3:
Data Acquisition / 4.8.1.4:
Accuracy Considerations / 4.8.1.5:
Semiconductor Strain Gages / 4.8.2:
Automatic (Self) Compensation for Temperature / 4.8.3:
Torque Sensors / 4.9:
Strain-Gage Torque Sensors / 4.9.1:
Design Considerations / 4.9.2:
Strain Capacity of the Gage / 4.9.2.1:
Strain-Gage Nonlinearity Limit / 4.9.2.2:
Sensitivity Requirement / 4.9.2.3:
Stiffness Requirement / 4.9.2.4:
Deflection Torque Sensors / 4.9.3:
Direct-Deflection Torque Sensor / 4.9.3.1:
Variable-Reluctance Torque Sensor / 4.9.3.2:
Reaction Torque Sensors / 4.9.4:
Motor Current Torque Sensors / 4.9.5:
Force Sensors / 4.9.6:
Tactile Sensing / 4.10:
Tactile Sensor Requirements / 4.10.1:
Construction and Operation of Tactile Sensors / 4.10.2:
Optical Tactile Sensors / 4.10.3:
Piezoresistive Tactile Sensors / 4.10.4:
Dexterity / 4.10.5:
A Strain-Gage Tactile Sensor / 4.10.6:
Other Types of Tactile Sensors / 4.10.7:
Passive Compliance / 4.10.8:
Gyroscopic Sensors / 4.11:
Rate Gyro / 4.11.1:
Coriolis Force Devices / 4.11.2:
Optical Sensors and Lasers / 4.12:
Fiber-Optic Position Sensor / 4.12.1:
Laser Interferometer / 4.12.2:
Fiber-Optic Gyroscope / 4.12.3:
Laser Doppler Interferometer / 4.12.4:
Ultrasonic Sensors / 4.13:
Magnetostrictive Displacement Sensors / 4.13.1:
Thermofluid Sensors / 4.14:
Pressure Sensors / 4.14.1:
Flow Sensors / 4.14.2:
Temperature Sensors / 4.14.3:
Thermocouple / 4.14.3.1:
Resistance Temperature Detector / 4.14.3.2:
Thermistor / 4.14.3.3:
Bi-Metal Strip Thermometer / 4.14.3.4:
Other Types of Sensors / 4.15:
Digital Transducers / 5:
Advantages of Digital Transducers / 5.1:
Shaft Encoders / 5.2:
Encoder Types / 5.2.1:
Incremental Optical Encoders / 5.3:
Direction of Rotation / 5.3.1:
Hardware Features / 5.3.2:
Displacement Measurement / 5.3.3:
Digital Resolution / 5.3.3.1:
Physical Resolution / 5.3.3.2:
Step-Up Gearing / 5.3.3.3:
Interpolation / 5.3.3.4:
Velocity Measurement / 5.3.4:
Velocity Resolution / 5.3.4.1:
Data Acquisition Hardware / 5.3.4.2:
Absolute Optical Encoders / 5.4:
Gray Coding / 5.4.1:
Code Conversion Logic / 5.4.1.1:
Resolution / 5.4.2:
Advantages and Drawbacks / 5.4.3:
Encoder Error / 5.5:
Eccentricity Error / 5.5.1:
Miscellaneous Digital Transducers / 5.6:
Digital Resolvers / 5.6.1:
Digital Tachometers / 5.6.2:
Hall-Effect Sensors / 5.6.3:
Linear Encoders / 5.6.4:
Moire Fringe Displacement Sensors / 5.6.5:
Cable Extension Sensors / 5.6.6:
Binary Transducers / 5.6.7:
Stepper Motors / 6:
Principle of Operation / 6.1:
Permanent-Magnet (PM) Stepper Motor / 6.1.1:
Variable-Reluctance (VR) Stepper Motor / 6.1.2:
Polarity Reversal / 6.1.3:
Stepper Motor Classification / 6.2:
Single-Stack Stepper Motors / 6.2.1:
Toothed-Pole Construction / 6.2.2:
Another Toothed Construction / 6.2.3:
Microstepping / 6.2.4:
Multiple-Stack Stepper Motors / 6.2.5:
Equal-Pitch Multiple-Stack Stepper / 6.2.5.1:
Unequal-Pitch Multiple-Stack Stepper / 6.2.5.2:
Hybrid Stepper Motor / 6.2.6:
Driver and Controller / 6.3:
Driver Hardware / 6.3.1:
Motor Time Constant / 6.3.2:
Torque Motion Characteristics / 6.4:
Static Position Error / 6.4.1:
Damping of Stepper Motors / 6.5:
Mechanical Damping / 6.5.1:
Electronic Damping / 6.5.2:
Multiple Phase Energization / 6.5.3:
Stepping Motor Models / 6.6:
A Simplified Model / 6.6.1:
An Improved Model / 6.6.2:
Torque Equation for PM and HB Motors / 6.6.2.1:
Torque Equation for VR Motors / 6.6.2.2:
Control of Stepper Motors / 6.7:
Pulse Missing / 6.7.1:
Feedback Control / 6.7.2:
Torque Control through Switching / 6.7.3:
Model-Based Feedback Control / 6.7.4:
Stepper Motor Selection and Applications / 6.8:
Torque Characteristics and Terminology / 6.8.1:
Stepper Motor Selection / 6.8.2:
Positioning (x-y) Tables / 6.8.2.1:
Stepper Motor Applications / 6.8.3:
Continuous-Drive Actuators / 7:
DC Motors / 7.1:
Rotor and Stator / 7.1.1:
Commutation / 7.1.2:
Static Torque Characteristics / 7.1.3:
Brushless DC Motors / 7.1.4:
Constant-Speed Operation / 7.1.4.1:
Transient Operation / 7.1.4.2:
Torque Motors / 7.1.5:
DC Motor Equations / 7.2:
Steady-State Characteristics / 7.2.1:
Bearing Friction / 7.2.1.1:
Output Power / 7.2.1.2:
Combined Excitation of Motor Windings / 7.2.1.3:
Speed Regulation / 7.2.1.4:
Experimental Model / 7.2.2:
Electrical Damping Constant / 7.2.2.1:
Linearized Experimental Model / 7.2.2.2:
Control of DC Motors / 7.3:
DC Servomotors / 7.3.1:
Armature Control / 7.3.2:
Motor Time Constants / 7.3.2.1:
Motor Parameter Measurement / 7.3.2.2:
Field Control / 7.3.3:
Feedback Control of DC Motors / 7.3.4:
Velocity Feedback Control / 7.3.4.1:
Position Plus Velocity Feedback Control / 7.3.4.2:
Position Feedback with Proportional, Integral, and Derivative Control / 7.3.4.3:
Phase-Locked Control / 7.3.5:
Motor Driver / 7.4:
Interface Card / 7.4.1:
Drive Unit / 7.4.2:
Pulse-Width Modulation / 7.4.3:
DC Motor Selection / 7.5:
Motor Data and Specifications / 7.5.1:
Selection Considerations / 7.5.2:
Motor Sizing Procedure / 7.5.3:
Inertia Matching / 7.5.3.1:
Drive Amplifier Selection / 7.5.3.2:
Induction Motors / 7.6:
Rotating Magnetic Field / 7.6.1:
Induction Motor Characteristics / 7.6.2:
Torque-Speed Relationship / 7.6.3:
Induction Motor Control / 7.7:
Excitation Frequency Control / 7.7.1:
Voltage Control / 7.7.2:
Rotor Resistance Control / 7.7.3:
Pole-Changing Control / 7.7.4:
Field Feedback Control (Flux Vector Drive) / 7.7.5:
A Transfer-Function Model for an Induction Motor / 7.7.6:
Single-Phase AC Motors / 7.7.7:
Synchronous Motors / 7.8:
Control of a Synchronous Motor / 7.8.1:
Linear Actuators / 7.9:
Solenoid / 7.9.1:
Linear Motors / 7.9.2:
Hydraulic Actuators / 7.10:
Components of a Hydraulic Control System / 7.10.1:
Hydraulic Pumps and Motors / 7.10.2:
Hydraulic Valves / 7.10.3:
Spool Valve / 7.10.3.1:
Steady-State Valve Characteristics / 7.10.3.2:
Hydraulic Primary Actuators / 7.10.4:
Load Equation / 7.10.5:
Hydraulic Control Systems / 7.11:
Constant-Flow Systems / 7.11.1:
Pump-Controlled Hydraulic Actuators / 7.11.3:
Hydraulic Accumulators / 7.11.4:
Pneumatic Control Systems / 7.11.5:
Flapper Valves / 7.11.6:
Hydraulic Circuits / 7.11.7:
Fluidics / 7.12:
Fluidic Components / 7.12.1:
Logic Components / 7.12.1.1:
Fluidic Motion Sensors / 7.12.1.2:
Fluidic Amplifiers / 7.12.1.3:
Fluidic Control Systems / 7.12.2:
Interfacing Considerations / 7.12.2.1:
Modular Laminated Construction / 7.12.2.2:
Applications of Fluidics / 7.12.3:
Mechanical Transmission Components / 8:
Mechanical Components / 8.1:
Transmission Components / 8.2:
Lead Screw and Nut / 8.3:
Harmonic Drives / 8.4:
Continuously Variable Transmission / 8.5:
Two-Slider CVT / 8.5.1:
A Three-Slider CVT / 8.5.3:
Bibliography and Further Reading
Answers to Numerical Problems
Index
Control, Instrumentation, and Design / 1:
Introduction / 1.1:
Control Engineering / 1.2:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼