close
1.

図書

図書
Yukitaka Murakami
出版情報: London : Academic Press, an imprint of Elsevier, c2019  xxiii, 734 p. ; 23 cm
所蔵情報: loading…
2.

図書

図書
American Society for Testing and Materials
出版情報: Philadelphia : ASTM, [1969]  ix, 193 p. ; 24 cm
シリーズ名: ASTM special technical publication ; 465
所蔵情報: loading…
3.

図書

図書
prepared for the Metal Properties Council, by Erhard Krempl
出版情報: Philadelphia : American Society for Testing and Materials, c1974  v, 46 p. ; 28 cm
シリーズ名: ASTM special technical publication ; 549
所蔵情報: loading…
4.

図書

図書
compiled by F.R. Hutchings and Paul M. Unterweiser
出版情報: Metals Park, Ohio : American Society for Metals, c1981  xi, 496 p. ; 28 cm
シリーズ名: Technical report (British Engine Insurance Ltd.)
所蔵情報: loading…
5.

図書

図書
edited by R.P. Skelton
出版情報: London ; New York : Elsevier Applied Science, c1987  x, 325 p. ; 23 cm
所蔵情報: loading…
6.

図書

図書
John M. Barsom, Stanley T. Rolfe
出版情報: Englewood Cliffs, N.J. : Prentice-Hall, c1987  xx, 628 p. ; 24 cm
シリーズ名: Prentice-Hall international series in civil engineering and engineering mechanics
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Preface
Introduction to Fracture Mechanics / Part I:
Overview of the Problem of Fracture and Fatigue in Structures / Chapter 1:
Historical Background / 1.1:
Ductile vs. Brittle Behavior / 1.2:
Notch Toughness / 1.3:
Driving Force, K[subscript I] / 1.4:
Resistance Force, K[subscript c] / 1.4.2:
Fracture Mechanics Design / 1.5:
Fatigue and Stress-Corrosion Crack Growth / 1.6:
Fracture and Fatigue Control / 1.7:
Fracture Criteria / 1.8:
Fitness for Service / 1.9:
Case Studies / 1.10:
References / 1.11:
Stress Analysis for Members with Cracks--K[subscript I] / Chapter 2:
Introduction / 2.1:
Stress-Concentration Factor--k[subscript t] / 2.2:
Stress-Intensity Factor--K[subscript I] / 2.3:
Stress-Intensity-Factor Equations / 2.4:
Through-Thickness Crack / 2.4.1:
Single-Edge Notch / 2.4.2:
Embedded Elliptical or Circular Crack in Infinite Plate / 2.4.3:
Surface Crack / 2.4.4:
Cracks Growing from Round Holes / 2.4.5:
Single Crack in Beam in Bending / 2.4.6:
Holes or Cracks Subjected to Point or Pressure Loading / 2.4.7:
Estimation of Other K[subscript I] Factors / 2.4.8:
Superposition of Stress-Intensity Factors / 2.4.9:
Crack-Tip Deformation and Plastic Zone Size / 2.5:
Effective K[subscript I] Factor for Large Plastic Zone Size / 2.6:
J[subscript I] and [delta][subscript I] Driving Forces / 2.7:
J Integral / 2.7.1:
CTOD ([delta][subscript I]) / 2.7.2:
Summary / 2.8:
Appendix / 2.9:
Griffith, CTOD and J-Integral Theories / 2.10:
The Griffith Theory / 2.10.1:
Crack-Tip Opening Displacement (CTOD) and the Dugdale Model / 2.10.2:
J-Integral / 2.10.3:
Fracture Behavior / Part II:
Resistance Forces--K[subscript c]-J[subscript c]-[delta][subscript c] / Chapter 3:
General Overview / 3.1:
Service Conditions Affecting Fracture Toughness / 3.2:
Temperature / 3.2.1:
Loading Rate / 3.2.2:
Constraint / 3.2.3:
ASTM Standard Fracture Tests / 3.3:
Fracture Behavior Regions / 3.4:
General ASTM Fracture Test Methodology / 3.5:
Test Specimen Size / 3.5.1:
Test Specimen Notch / 3.5.2:
Test Fixtures and Instrumentation / 3.5.3:
Analysis of Results / 3.5.4:
Relations Between K-J-[delta] / 3.6:
Appendix A: K, J, CTOD ([delta]) Standard Test Method--E 1820 / 3.7:
Appendix B: Reference Temperature T[subscript o], to Establish a Master Curve Using K[subscript Jc] Values in Standard Test Method E 1921 / 3.9:
Effects of Temperature, Loading Rate, and Constraint / Chapter 4:
Effects of Temperature and Loading Rate on K[subscript Ic], K[subscript Ic](t), and K[subscript Id] / 4.1:
Effect of Loading Rate on Fracture Toughness / 4.3:
Effect of Constraint on Fracture Toughness / 4.4:
Loading-Rate Shift for Structural Steels / 4.5:
CVN Temperature Shift / 4.5.1:
K[subscript Ic]-K[subscript Id] Impact-Loading-Rate Shift / 4.5.2:
K[subscript Ic](t) Intermediate-Loading Rate Shift / 4.5.3:
Predictive Relationship for Temperature Shift / 4.5.4:
Significance of Temperature Shift / 4.5.5:
CVN-K[subscript Id]-K[subscript c] Correlations / 4.6:
General / 5.1:
Two-Stage CVN-K[subscript Id]-K[subscript c] Correlation / 5.2:
K[subscript Ic]-CVN Upper-Shelf Correlation / 5.3:
K[subscript Id] Value at NDT Temperature / 5.4:
Comparison of CVN-K[subscript Id]-K[subscript Ic]-J and [delta] Relations / 5.5:
Fracture-Mechanics Design / 5.6:
General Fracture-Mechanics Design Procedure for Terminal Failure / 6.1:
Design Selection of Materials / 6.3:
Design Analysis of Failure of a 260-In.-Diameter Motor Case / 6.4:
Design Example--Selection of a High-Strength Steel for a Pressure Vessel / 6.5:
Case I--Traditional Design Approach / 6.5.1:
Case II--Fracture-Mechanics Design / 6.5.2:
General Analysis of Cases I and II / 6.5.3:
Fatigue and Environmental Behavior / 6.6:
Introduction to Fatigue / Chapter 7:
Factors Affecting Fatigue Performance / 7.1:
Fatigue Loading / 7.3:
Constant-Amplitude Loading / 7.3.1:
Variable-Amplitude Loading / 7.3.2:
Fatigue Testing / 7.4:
Small Laboratory Tests / 7.4.1:
Fatigue-Crack-Initiation Tests / 7.4.1a:
Fatigue-Crack-Propagation Tests / 7.4.1b:
Tests of Actual or Simulated Structural Components / 7.4.2:
Some Characteristics of Fatigue Cracks / 7.5:
Fatigue-Crack Initiation / 7.6:
General Background / 8.1:
Effect of Stress Concentration on Fatigue-Crack Initiation / 8.2:
Generalized Equation for Predicting the Fatigue-Crack-Initiation Threshold for Steels / 8.3:
Methodology for Predicting Fatigue-Crack Initiation from Notches / 8.4:
Fatigue-Crack Propagation under Constant and Variable-Amplitude Load Fluctuation / 8.5:
Fatigue-Crack-Propagation Threshold / 9.1:
Constant Amplitude Load Fluctuation / 9.3:
Martensitic Steels / 9.3.1:
Ferrite-Pearlite Steels / 9.3.2:
Austenitic Stainless Steels / 9.3.3:
Aluminum and Titanium Alloys / 9.3.4:
Effect of Mean Stress on Fatigue-Crack Propagation Behavior / 9.4:
Effects on Cyclic Frequency and Waveform / 9.5:
Effects of Stress Concentration on Fatigue-Crack Growth / 9.6:
Fatigue-Crack Propagation in Steel Weldments / 9.7:
Design Example / 9.8:
Variable-Amplitude Load Fluctuation / 9.9:
Probability-Density Distribution / 9.9.1:
Fatigue-Crack Growth under Variable-Amplitude Loading / 9.9.2:
Single and Multiple High-Load Fluctuations / 9.9.3:
Variable-Amplitude Load Fluctuations / 9.9.4:
The Root-Mean-Square (RMS) Model / 9.9.4.1:
Fatigue-Crack Growth Under Variable-Amplitude Ordered-Sequence Cyclic Load / 9.9.4.2:
Fatigue-Crack Growth in Various Steels / 9.10:
Fatigue-Crack Growth Under Various Unimodal Distribution Curves / 9.11:
Fatigue and Fracture Behavior of Welded Components / 9.12:
Residual Stresses / 10.1:
Distortion / 10.3:
Stress Concentration / 10.4:
Weld Discontinuities and Their Effects / 10.5:
Fatigue Crack Initiation Sites / 10.5.1:
Fatigue Crack Behavior of Welded Components / 10.6:
Fatigue Behavior of Smooth Welded Components / 10.6.1:
Specimen Geometries and Test Methods / 10.6.1.1:
Effects of Surface Roughness / 10.6.1.2:
Fatigue Behavior of As-Welded Components / 10.6.2:
Effect of Geometry / 10.6.2.1:
Effect of Composition / 10.6.2.2:
Effect of Residual Stress / 10.6.2.3:
Effect of Postweld Heat Treatment / 10.6.2.4:
Methodologies of Various Codes and Standards / 10.7:
AASHTO Fatigue Design Curves for Welded Bridge Components / 10.7.1:
Variable Amplitude Cyclic Loads / 10.8:
Example Problem / 10.8.1:
Fracture-Toughness Behavior of Welded Components / 10.9:
General Discussion / 10.9.1:
Weldments / 10.9.2:
Fracture-Toughness Tests for Weldments / 10.9.3:
K[subscript Iscc] and Corrosion Fatigue Crack Initiation and Crack Propagation / 10.10:
Stress-Corrosion Cracking / 11.1:
Fracture-Mechanics Approach / 11.2.1:
Experimental Procedures / 11.2.2:
K[subscript Iscc]--A Material Property / 11.2.3:
Test Duration / 11.2.4:
K[subscript Iscc] Data for Some Material-Environment Systems / 11.2.5:
Crack-Growth-Rate Tests / 11.2.6:
Corrosion-Fatigue Crack Initiation / 11.3:
Test Specimens and Experimental Procedures / 11.3.1:
Corrosion-Fatigue-Crack-Initiation Behavior of Steels / 11.3.2:
Fatigue-Crack-Initiation Behavior / 11.3.2.1:
Corrosion Fatigue Crack-Initiation Behavior / 11.3.2.2:
Effect of Cyclic-Load Frequency / 11.3.2.3:
Effect of Stress Ratio / 11.3.2.4:
Long-Life Behavior / 11.3.2.5:
Generalized Equation for Predicting the Corrosion-Fatigue Crack-Initiation Behavior for Steels / 11.3.2.6:
Corrosion-Fatigue-Crack Propagation / 11.4:
Corrosion-Fatigue Crack-Propagation Threshold / 11.4.1:
Corrosion-Fatigue-Crack-Propagation Behavior Below K[subscript Iscc] / 11.4.2:
Effect of Cyclic-Stress Waveform / 11.4.3:
Environmental Effects During Transient Loading / 11.4.4:
Generalized Corrosion-Fatigue Behavior / 11.4.5:
Prevention of Corrosion-Fatigue Failures / 11.5:
Fracture and Fatigue Control Plan / 11.6:
Identification of the Factors / 12.3.1:
Establishment of the Relative Contribution / 12.3.2:
Determination of Relative Efficiency / 12.3.3:
Recommendation of Specific Design Considerations / 12.3.4:
Fracture Control Plan for Steel Bridges / 12.4:
Design / 12.4.1:
Fabrication / 12.4.3:
Material / 12.4.4:
AASHTO Charpy V-Notch Requirements / 12.4.5:
Verification of the AASHTO Fracture Toughness Requirement / 12.4.6:
High-Performance Steels / 12.4.7:
Comprehensive Fracture-Control Plans--George R. Irwin / 12.5:
General Levels of Performance / 12.6:
Consequences of Failure / 13.3:
Original 15-ft-lb CVN Impact Criterion for Ship Steels / 13.4:
Transition-Temperature Criterion / 13.5:
Through-Thickness Yielding Criterion / 13.6:
Leak-Before-Break Criterion / 13.7:
Fracture Criterion for Steel Bridges / 13.8:
Use of Fracture Mechanics in Fitness-for-Service Analysis / 13.9:
Effect of Loading Rate / 14.2.1:
Effect of Constraint / 14.2.3:
Effect of Many Factors / 14.2.4:
Existing Fitness-for-Service Procedures / 14.3:
PD 6493 / 14.3.1:
ASME Section XI / 14.3.3:
API 579 / 14.3.4:
Benefits of a Proof or Hydro-Test to Establish Fitness for Continued Service / 14.4:
Difference Between Initiation and Arrest (Propagation) Fracture Toughness Behavior / 14.5:
Applications of Fracture Mechanics--Case Studies / 14.6:
Importance of Fracture Toughness and Proper Fabrication Procedures--The Bryte Bend Bridge / Chapter 15:
AASHTO Fracture Control Plan for Steel Bridges / 15.1:
Bryte Bend Bridge Brittle Fracture / 15.3:
Design Aspects of the Bryte Bend Bridge as Related to the AASHTO Fracture Control Plan (FCP) / 15.4:
Adequacy of the Current AASHTO Fracture Control Plan / 15.5:
Implied vs. Guaranteed Notch Toughness / 15.5.1:
Effect of Details on Fatigue Life / 15.5.2:
Importance of Constraint and Loading--The Ingram Barge / 15.5.3:
Effect of Constraint on Structural Behavior / 16.1:
Constraint Experiences in the Ship Industry / 16.3:
Ingram Barge Failure / 16.4:
Importance of Loading and Inspection--Trans Alaska Pipeline Service Oil Tankers / 16.5:
Background / 17.1:
Fracture Mechanics Methodology / 17.3:
Application of Methodology to a Detail in an Oil Tanker / 17.4:
Identification of Critical Details / 17.4.1:
Fracture Toughness / 17.4.2:
Stress Intensity Factors and Critical Crack Size for Critical Details / 17.4.3:
Inspection Capability for Initial Crack Size, a[subscript o] / 17.4.4:
Determination of Histogram for Fatigue Loading / 17.4.5:
Fatigue Crack Propagation in Bottom Shell Plates / 17.4.6:
Effect of Reduced Fatigue Loading / 17.5:
Importance of Proper Analysis, Fracture Toughness, Fabrication, and Loading on Structural Behavior--Failure Analysis of a Lock-and-Dam Sheet Piling / 17.6:
Description of the Failure / 18.1:
Steel Properties / 18.3:
Failure Analysis of Sheet 55 / 18.4:
Importance of Loading Rate on Structural Performance--Burst Tests of Steel Casings / 18.5:
Material and Experimental Procedures / 19.1:
Experimental Procedure / 19.3:
Failure Analysis / 19.4:
Metallographic Analysis / 19.5:
Examination of API Specifications for J-55 and K-55 Casing / 19.6:
Problems / 19.7:
Index
Foreword
Preface
Introduction to Fracture Mechanics / Part I:
7.

図書

図書
by Thomas J. Dolan, B.J. Lazan, Oscar J. Horger
出版情報: Ohio : American Society for Metals, c1954  121 p. ; 24 cm
所蔵情報: loading…
8.

図書

図書
J.C. Newman, Jr. and R.S. Piascik, editors
出版情報: West Conshohocken, PA : ASTM, c2000  xii, 431 p. ; 24 cm
シリーズ名: ASTM special technical publication ; 1372
所蔵情報: loading…
目次情報: 続きを見る
Overview
Mechanisms
Mechanisms and Modeling of Near-Threshold Fatigue Crack Propagation / J. Petit ; G. Henaff ; C. Sarrazin-Baudoux
The Significance of the Intrinsic Threshold--What Is New? / A. Hadrboletz ; B. Weiss ; R. Stickler
On the Significance of Crack Tip Shielding in Fatigue Threshold-Theoretical Relations and Experimental Implications / H.-J. Schindler
Effects of K[subscript max] on Fatigue Crack Growth Threshold in Aluminum Alloys / J. A. Newman, Jr. ; W. T. Riddell ; R. S. Piascik
Test Procedures
Fatigue Crack Growth Threshold Concept and Test Results for Al- and Ti-Alloys / G. Marci
Resistance Curves for the Threshold of Fatigue Crack Propagation in Particle Reinforced Aluminium Alloys / B. Tabernig ; P. Powell ; R. Pippan
An Indirect Technique for Determining Closure-Free Fatigue Crack Growth Behavior / S. W. Smith
Effect of an Overload on the Threshold Level of Ti-6-22-22 / A. J. McEvily ; M. Ohashi ; R. Shover ; A. DeCarmine
Relation Between Endurance Limits and Thresholds in the Field of Gigacycle Fatigue / C. Bathias
A Size Effect on the Fatigue Crack Growth Rate Threshold of Alloy 718 / K. R. Garr ; G. C. Hresko, III
Effect of Geometry and Load History on Fatigue Crack Growth in Ti-62222 / H. O. Liknes ; R. R. Stephens
Increases in Fatigue Crack Growth Rate and Reductions in Fatigue Strength Due to Periodic Overstrains in Biaxial Fatigue Loading / A. Varvani-Farahani ; T. H. Topper
Analysis
Analysis of Fatigue Crack Closure During Simulated Threshold Testing / R. C. McClung
Analyses of Fatigue Crack Growth and Closure Near Threshold Conditions for Large-Crack Behavior / J. C. Newman, Jr.
The Mechanics of Moderately Stressed Cracks / F. O. Riemelmoser
Applications
Pitfalls to Avoid in Threshold Testing and Its Interpretation / R. W. Bush ; J. K. Donald ; R. J. Bucci
Use of Small Fatigue Crack Growth Analysis in Predicting the S-N Response of Cast Aluminium Alloys / M. J. Caton ; J. W. Jones ; J. E. Allison
Prediction of Fatigue Limits of Engineering Components Containing Small Defects / Y. Akiniwa ; K. Tanaka
Corrosion Fatigue Crack Growth Thresholds for Cast Nickel-Aluminum Bronze and Welds / E. J. Czyryca
Mean Stress and Environmental Effects on Near-Threshold Fatigue Crack Propagation on a Ti6246 Alloy at Room Temperature and 500[degree]C / Y. Chabanne
Component Design: The Interface Between Threshold and Endurance Limit / D. Taylor ; G. Wang
Near-Threshold Fatigue Strength of a Welded Steel Bridge Detail / P. Albrecht ; W. J. Wright
Fatigue Crack Growth Thresholds Measurements in Structural Materials / R. Lindstrom ; P. Lidaar ; B. Rosborg
Endurance Limit Design of Spheroidal Graphite Cast Iron Components Based on Natural Defects / G. Marquis ; R. Rabb ; L. Siivonen
Author Index
Subject Index
Overview
Mechanisms
Mechanisms and Modeling of Near-Threshold Fatigue Crack Propagation / J. Petit ; G. Henaff ; C. Sarrazin-Baudoux
9.

図書

図書
the Society of Materials Science, Japan
出版情報: Amsterdam ; Tokyo : Elsevier, c1996  3 v. ; 27 cm
所蔵情報: loading…
10.

図書

図書
edited by R.P. Skelton
出版情報: London ; New York : Applied Science Publishers , New York : sole distributor in the USA and Canada, Elsevier Science Publishing, c1983  xii, 409 p. ; 23 cm
所蔵情報: loading…
11.

図書

図書
Jaroslav Polák
出版情報: Amsterdam : Elsevier, 1991  315 p. ; 25 cm
シリーズ名: Materials science monographs ; 63
所蔵情報: loading…
12.

図書

図書
Mirko Klesnil and Petr Lukáš
出版情報: Amsterdam ; New York : Elsevier, 1992  270 p. ; 25 cm
シリーズ名: Materials science monographs ; 71
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Cyclic Stress-Strain Response / 2:
Mechanical properties
Microstructure
Theories of hardening and softening
Fatigue-Crack Nucleation / 3:
Stress near surface
Sites of crack initiation
Near-surface dislocation structures
Surface relief and its relation to near-surface dislocation structures
Mechanisms of crack nucleation
Factors influencing crack nucleation
Fatigue-Crack Propagation / 4:
Kinetics of crack growth
Fracture mechanics for fatigue cracks
Quantitative description of fatigue-crack propagation rate and threshold
Properties of plastic zone
Models of fatigue-cracks propagation and thresholds
Effects of miscellaneous factors on the crack-propagation rate
Fatigue-Life Curves / 5:
Fatigue-life curve sgr; a versus Ngr; f
Fatigue-life curve egr; a versus Ngr; f
Transformation of fatigue-life curves
Influence of cycle asymmetry
Hysteresis energy and fatigue life
Fatigue limit
Curves of constant damage
S/N curves of precracked bodies
Influence of temperature on fatigue life
Notched Behaviour / 6:
Stress and strain concentration
Influence of notches on fatigue life
Fatigue Life for Random Loading / 7:
Cyclic plasticity
Analysis of random variations of stress and strain
Prediction of fatigue life
References
Subject Index
Introduction / 1:
Cyclic Stress-Strain Response / 2:
Mechanical properties
13.

図書

図書
[by] Howard L. Leve [& others] ; edited by Angel F. Madayag
出版情報: New York : Wiley, [1968, c1969]  ix, 425 p. ; 24 cm
所蔵情報: loading…
14.

図書

図書
[by] J. B. Conway and P. N. Flagella
出版情報: New York : Gordon and Breach, [1971]  viii, 787 p ; 24 cm
所蔵情報: loading…
15.

図書

図書
by L. Sors ; English translation editor, S.E. Mitchell
出版情報: Oxford ; New York : Pergamon Press, [1971]  xiv, 96, 109 p. ; 24 cm
シリーズ名: International series of monographs in mechanical engineering ; v. 6
所蔵情報: loading…
16.

図書

図書
Julie A. Bannantine, Jess J. Comer, James L. Handrock
出版情報: Englewood Cliffs, N.J. : Prentice Hall, c1990  xiii, 273 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Stress-Life / 1:
Strain-Life / 2:
Fracture Mechanics / 3:
Notches / 4:
Variable Amplitude Loading / 5:
Comparison of Methods / 6:
Multiaxial Fatigue / 7:
Stress-Life / 1:
Strain-Life / 2:
Fracture Mechanics / 3:
17.

図書

図書
Stanley T. Rolfe, John M. Barsom
出版情報: Englewood Cliffs, N.J. : Prentice-Hall, c1977  xiv, 562 p. ; 24 cm
シリーズ名: Prentice-Hall international series in civil engineering and engineering mechanics
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Preface
Introduction to Fracture Mechanics / Part I:
Overview of the Problem of Fracture and Fatigue in Structures / Chapter 1:
Historical Background / 1.1:
Ductile vs. Brittle Behavior / 1.2:
Notch Toughness / 1.3:
Driving Force, K[subscript I] / 1.4:
Resistance Force, K[subscript c] / 1.4.2:
Fracture Mechanics Design / 1.5:
Fatigue and Stress-Corrosion Crack Growth / 1.6:
Fracture and Fatigue Control / 1.7:
Fracture Criteria / 1.8:
Fitness for Service / 1.9:
Case Studies / 1.10:
References / 1.11:
Stress Analysis for Members with Cracks--K[subscript I] / Chapter 2:
Introduction / 2.1:
Stress-Concentration Factor--k[subscript t] / 2.2:
Stress-Intensity Factor--K[subscript I] / 2.3:
Stress-Intensity-Factor Equations / 2.4:
Through-Thickness Crack / 2.4.1:
Single-Edge Notch / 2.4.2:
Embedded Elliptical or Circular Crack in Infinite Plate / 2.4.3:
Surface Crack / 2.4.4:
Cracks Growing from Round Holes / 2.4.5:
Single Crack in Beam in Bending / 2.4.6:
Holes or Cracks Subjected to Point or Pressure Loading / 2.4.7:
Estimation of Other K[subscript I] Factors / 2.4.8:
Superposition of Stress-Intensity Factors / 2.4.9:
Crack-Tip Deformation and Plastic Zone Size / 2.5:
Effective K[subscript I] Factor for Large Plastic Zone Size / 2.6:
J[subscript I] and [delta][subscript I] Driving Forces / 2.7:
J Integral / 2.7.1:
CTOD ([delta][subscript I]) / 2.7.2:
Summary / 2.8:
Appendix / 2.9:
Griffith, CTOD and J-Integral Theories / 2.10:
The Griffith Theory / 2.10.1:
Crack-Tip Opening Displacement (CTOD) and the Dugdale Model / 2.10.2:
J-Integral / 2.10.3:
Fracture Behavior / Part II:
Resistance Forces--K[subscript c]-J[subscript c]-[delta][subscript c] / Chapter 3:
General Overview / 3.1:
Service Conditions Affecting Fracture Toughness / 3.2:
Temperature / 3.2.1:
Loading Rate / 3.2.2:
Constraint / 3.2.3:
ASTM Standard Fracture Tests / 3.3:
Fracture Behavior Regions / 3.4:
General ASTM Fracture Test Methodology / 3.5:
Test Specimen Size / 3.5.1:
Test Specimen Notch / 3.5.2:
Test Fixtures and Instrumentation / 3.5.3:
Analysis of Results / 3.5.4:
Relations Between K-J-[delta] / 3.6:
Appendix A: K, J, CTOD ([delta]) Standard Test Method--E 1820 / 3.7:
Appendix B: Reference Temperature T[subscript o], to Establish a Master Curve Using K[subscript Jc] Values in Standard Test Method E 1921 / 3.9:
Effects of Temperature, Loading Rate, and Constraint / Chapter 4:
Effects of Temperature and Loading Rate on K[subscript Ic], K[subscript Ic](t), and K[subscript Id] / 4.1:
Effect of Loading Rate on Fracture Toughness / 4.3:
Effect of Constraint on Fracture Toughness / 4.4:
Loading-Rate Shift for Structural Steels / 4.5:
CVN Temperature Shift / 4.5.1:
K[subscript Ic]-K[subscript Id] Impact-Loading-Rate Shift / 4.5.2:
K[subscript Ic](t) Intermediate-Loading Rate Shift / 4.5.3:
Predictive Relationship for Temperature Shift / 4.5.4:
Significance of Temperature Shift / 4.5.5:
CVN-K[subscript Id]-K[subscript c] Correlations / 4.6:
General / 5.1:
Two-Stage CVN-K[subscript Id]-K[subscript c] Correlation / 5.2:
K[subscript Ic]-CVN Upper-Shelf Correlation / 5.3:
K[subscript Id] Value at NDT Temperature / 5.4:
Comparison of CVN-K[subscript Id]-K[subscript Ic]-J and [delta] Relations / 5.5:
Fracture-Mechanics Design / 5.6:
General Fracture-Mechanics Design Procedure for Terminal Failure / 6.1:
Design Selection of Materials / 6.3:
Design Analysis of Failure of a 260-In.-Diameter Motor Case / 6.4:
Design Example--Selection of a High-Strength Steel for a Pressure Vessel / 6.5:
Case I--Traditional Design Approach / 6.5.1:
Case II--Fracture-Mechanics Design / 6.5.2:
General Analysis of Cases I and II / 6.5.3:
Fatigue and Environmental Behavior / 6.6:
Introduction to Fatigue / Chapter 7:
Factors Affecting Fatigue Performance / 7.1:
Fatigue Loading / 7.3:
Constant-Amplitude Loading / 7.3.1:
Variable-Amplitude Loading / 7.3.2:
Fatigue Testing / 7.4:
Small Laboratory Tests / 7.4.1:
Fatigue-Crack-Initiation Tests / 7.4.1a:
Fatigue-Crack-Propagation Tests / 7.4.1b:
Tests of Actual or Simulated Structural Components / 7.4.2:
Some Characteristics of Fatigue Cracks / 7.5:
Fatigue-Crack Initiation / 7.6:
General Background / 8.1:
Effect of Stress Concentration on Fatigue-Crack Initiation / 8.2:
Generalized Equation for Predicting the Fatigue-Crack-Initiation Threshold for Steels / 8.3:
Methodology for Predicting Fatigue-Crack Initiation from Notches / 8.4:
Fatigue-Crack Propagation under Constant and Variable-Amplitude Load Fluctuation / 8.5:
Fatigue-Crack-Propagation Threshold / 9.1:
Constant Amplitude Load Fluctuation / 9.3:
Martensitic Steels / 9.3.1:
Ferrite-Pearlite Steels / 9.3.2:
Austenitic Stainless Steels / 9.3.3:
Aluminum and Titanium Alloys / 9.3.4:
Effect of Mean Stress on Fatigue-Crack Propagation Behavior / 9.4:
Effects on Cyclic Frequency and Waveform / 9.5:
Effects of Stress Concentration on Fatigue-Crack Growth / 9.6:
Fatigue-Crack Propagation in Steel Weldments / 9.7:
Design Example / 9.8:
Variable-Amplitude Load Fluctuation / 9.9:
Probability-Density Distribution / 9.9.1:
Fatigue-Crack Growth under Variable-Amplitude Loading / 9.9.2:
Single and Multiple High-Load Fluctuations / 9.9.3:
Variable-Amplitude Load Fluctuations / 9.9.4:
The Root-Mean-Square (RMS) Model / 9.9.4.1:
Fatigue-Crack Growth Under Variable-Amplitude Ordered-Sequence Cyclic Load / 9.9.4.2:
Fatigue-Crack Growth in Various Steels / 9.10:
Fatigue-Crack Growth Under Various Unimodal Distribution Curves / 9.11:
Fatigue and Fracture Behavior of Welded Components / 9.12:
Residual Stresses / 10.1:
Distortion / 10.3:
Stress Concentration / 10.4:
Weld Discontinuities and Their Effects / 10.5:
Fatigue Crack Initiation Sites / 10.5.1:
Fatigue Crack Behavior of Welded Components / 10.6:
Fatigue Behavior of Smooth Welded Components / 10.6.1:
Specimen Geometries and Test Methods / 10.6.1.1:
Effects of Surface Roughness / 10.6.1.2:
Fatigue Behavior of As-Welded Components / 10.6.2:
Effect of Geometry / 10.6.2.1:
Effect of Composition / 10.6.2.2:
Effect of Residual Stress / 10.6.2.3:
Effect of Postweld Heat Treatment / 10.6.2.4:
Methodologies of Various Codes and Standards / 10.7:
AASHTO Fatigue Design Curves for Welded Bridge Components / 10.7.1:
Variable Amplitude Cyclic Loads / 10.8:
Example Problem / 10.8.1:
Fracture-Toughness Behavior of Welded Components / 10.9:
General Discussion / 10.9.1:
Weldments / 10.9.2:
Fracture-Toughness Tests for Weldments / 10.9.3:
K[subscript Iscc] and Corrosion Fatigue Crack Initiation and Crack Propagation / 10.10:
Stress-Corrosion Cracking / 11.1:
Fracture-Mechanics Approach / 11.2.1:
Experimental Procedures / 11.2.2:
K[subscript Iscc]--A Material Property / 11.2.3:
Test Duration / 11.2.4:
K[subscript Iscc] Data for Some Material-Environment Systems / 11.2.5:
Crack-Growth-Rate Tests / 11.2.6:
Corrosion-Fatigue Crack Initiation / 11.3:
Test Specimens and Experimental Procedures / 11.3.1:
Corrosion-Fatigue-Crack-Initiation Behavior of Steels / 11.3.2:
Fatigue-Crack-Initiation Behavior / 11.3.2.1:
Corrosion Fatigue Crack-Initiation Behavior / 11.3.2.2:
Effect of Cyclic-Load Frequency / 11.3.2.3:
Effect of Stress Ratio / 11.3.2.4:
Long-Life Behavior / 11.3.2.5:
Generalized Equation for Predicting the Corrosion-Fatigue Crack-Initiation Behavior for Steels / 11.3.2.6:
Corrosion-Fatigue-Crack Propagation / 11.4:
Corrosion-Fatigue Crack-Propagation Threshold / 11.4.1:
Corrosion-Fatigue-Crack-Propagation Behavior Below K[subscript Iscc] / 11.4.2:
Effect of Cyclic-Stress Waveform / 11.4.3:
Environmental Effects During Transient Loading / 11.4.4:
Generalized Corrosion-Fatigue Behavior / 11.4.5:
Prevention of Corrosion-Fatigue Failures / 11.5:
Fracture and Fatigue Control Plan / 11.6:
Identification of the Factors / 12.3.1:
Establishment of the Relative Contribution / 12.3.2:
Determination of Relative Efficiency / 12.3.3:
Recommendation of Specific Design Considerations / 12.3.4:
Fracture Control Plan for Steel Bridges / 12.4:
Design / 12.4.1:
Fabrication / 12.4.3:
Material / 12.4.4:
AASHTO Charpy V-Notch Requirements / 12.4.5:
Verification of the AASHTO Fracture Toughness Requirement / 12.4.6:
High-Performance Steels / 12.4.7:
Comprehensive Fracture-Control Plans--George R. Irwin / 12.5:
General Levels of Performance / 12.6:
Consequences of Failure / 13.3:
Original 15-ft-lb CVN Impact Criterion for Ship Steels / 13.4:
Transition-Temperature Criterion / 13.5:
Through-Thickness Yielding Criterion / 13.6:
Leak-Before-Break Criterion / 13.7:
Fracture Criterion for Steel Bridges / 13.8:
Use of Fracture Mechanics in Fitness-for-Service Analysis / 13.9:
Effect of Loading Rate / 14.2.1:
Effect of Constraint / 14.2.3:
Effect of Many Factors / 14.2.4:
Existing Fitness-for-Service Procedures / 14.3:
PD 6493 / 14.3.1:
ASME Section XI / 14.3.3:
API 579 / 14.3.4:
Benefits of a Proof or Hydro-Test to Establish Fitness for Continued Service / 14.4:
Difference Between Initiation and Arrest (Propagation) Fracture Toughness Behavior / 14.5:
Applications of Fracture Mechanics--Case Studies / 14.6:
Importance of Fracture Toughness and Proper Fabrication Procedures--The Bryte Bend Bridge / Chapter 15:
AASHTO Fracture Control Plan for Steel Bridges / 15.1:
Bryte Bend Bridge Brittle Fracture / 15.3:
Design Aspects of the Bryte Bend Bridge as Related to the AASHTO Fracture Control Plan (FCP) / 15.4:
Adequacy of the Current AASHTO Fracture Control Plan / 15.5:
Implied vs. Guaranteed Notch Toughness / 15.5.1:
Effect of Details on Fatigue Life / 15.5.2:
Importance of Constraint and Loading--The Ingram Barge / 15.5.3:
Effect of Constraint on Structural Behavior / 16.1:
Constraint Experiences in the Ship Industry / 16.3:
Ingram Barge Failure / 16.4:
Importance of Loading and Inspection--Trans Alaska Pipeline Service Oil Tankers / 16.5:
Background / 17.1:
Fracture Mechanics Methodology / 17.3:
Application of Methodology to a Detail in an Oil Tanker / 17.4:
Identification of Critical Details / 17.4.1:
Fracture Toughness / 17.4.2:
Stress Intensity Factors and Critical Crack Size for Critical Details / 17.4.3:
Inspection Capability for Initial Crack Size, a[subscript o] / 17.4.4:
Determination of Histogram for Fatigue Loading / 17.4.5:
Fatigue Crack Propagation in Bottom Shell Plates / 17.4.6:
Effect of Reduced Fatigue Loading / 17.5:
Importance of Proper Analysis, Fracture Toughness, Fabrication, and Loading on Structural Behavior--Failure Analysis of a Lock-and-Dam Sheet Piling / 17.6:
Description of the Failure / 18.1:
Steel Properties / 18.3:
Failure Analysis of Sheet 55 / 18.4:
Importance of Loading Rate on Structural Performance--Burst Tests of Steel Casings / 18.5:
Material and Experimental Procedures / 19.1:
Experimental Procedure / 19.3:
Failure Analysis / 19.4:
Metallographic Analysis / 19.5:
Examination of API Specifications for J-55 and K-55 Casing / 19.6:
Problems / 19.7:
Index
Foreword
Preface
Introduction to Fracture Mechanics / Part I:
18.

図書

図書
edited by E. J. Richards and D. J. Mead
出版情報: London ; New York [etc.] : Wiley, 1968  xii, 512 p ; 24 cm
所蔵情報: loading…
19.

図書

図書
by P.G. Forrest
出版情報: Oxford ; New York : Pergamon Press, 1962  ix, 425 p., [5] folded leaves of plates ; 24 cm
所蔵情報: loading…
20.

図書

図書
N.E. Frost, K.J. Marsh, L.P. Pook
出版情報: Oxford [Eng.] : Clarendon Press, 1974  xii, 499 p., [10] leaves of plates ; 25 cm
シリーズ名: The Oxford engineering science series
所蔵情報: loading…
21.

図書

図書
[by] V. J. Colangelo [and] F. A. Heiser
出版情報: New York : Wiley, [1974]  vi, 361 p ; 23 cm
シリーズ名: Wiley series on the science and technology of materials
所蔵情報: loading…
目次情報: 続きを見る
Mechanical Testing
Nondestructive Testing
Fractography
Ductile and Brittle Fracture
Fatigue
Corrosion
Wear
Hydrogen Degradation
Metalworking Defects
Casting Defects
Heat Treatment
Welding
Index
Mechanical Testing
Nondestructive Testing
Fractography
22.

図書

図書
prepared for the Metal Properties Council by E. Krempl and B. M. Wundt
出版情報: Philadelphia : American Society for Testing and Materials, [1971]  vi, 29 p. ; 28 cm
シリーズ名: ASTM special technical publication ; 489
所蔵情報: loading…
23.

図書

図書
edited by Matěj Bílý
出版情報: Amsterdam ; Tokyo : Elsevier, 1993  xiv, 372 p. ; 25 cm
シリーズ名: Materials science monographs ; 78
所蔵情報: loading…
24.

図書

図書
prepared by Committee E-9 on Fatigue American Society for Testing Materials 1958
出版情報: Philadelphia, Pa. : ASTM, 1958  ix, 80 p. ; 28 cm
シリーズ名: ASTM special technical publication ; no. 91-A
所蔵情報: loading…
25.

図書

図書
editors, Yoshimi R. Takeuchi, William F. Mandler
出版情報: West Conshohocken, Pa. : ASTM international, 2012  vii, 192 pages ; 23 cm
シリーズ名: Journal of ASTM international selected technical papers ; 1542
所蔵情報: loading…
26.

図書

図書
JAI guest editors, Ashok Saxena, Bilal Dogan
出版情報: West Conshohocken, PA : ASTM International, 2011  viii, 378 p. ; 23 cm
シリーズ名: Journal of ASTM international selected technical papers ; 1539
所蔵情報: loading…
27.

図書

図書
Ralph I. Stephens ... [et al.]
出版情報: New York : J. Wiley, c2001  xxi, 472 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Biographical Sketches
Introduction and Historical Overview / 1:
Mechanical Failure Modes / 1.1:
Importance of Fatigue Considerations in Design / 1.2:
Historical Overview of Fatigue / 1.3:
Summary / 1.4:
Dos and Don'ts in Design / 1.5:
References / 1.6:
Problems
Fatigue Design Methods / 2:
Strategies in Fatigue Design / 2.1:
The In-House Tool / 2.1.1:
The New Model / 2.1.2:
The New Product / 2.1.3:
Design to Code / 2.1.4:
Fatigue Design Criteria / 2.2:
Infinite-Life Design / 2.2.1:
Safe-Life Design / 2.2.2:
Fail-Safe Design / 2.2.3:
Damage-Tolerant Design / 2.2.4:
Analysis and Testing / 2.3:
Probabilistic Design and Reliability / 2.4:
CAE and Digital Prototyping / 2.5:
In-Service Inspection and Acquisition of Relevant Experience / 2.6:
Macro/Micro Aspects of Fatigue of Metals / 2.7:
Fatigue Fracture Surfaces and Macroscopic Features / 3.1:
Fatigue Mechanisms and Microscopic Features / 3.2:
Fatigue Tests and the Stress-Life (S-N) Approach / 3.3:
Fatigue Loading, Test Machines, and Specimens / 4.1:
Fatigue Loading / 4.1.1:
Fatigue Test Machines / 4.1.2:
Fatigue Test Specimens / 4.1.3:
Stress-Life (S-N) Curves / 4.2:
General S-N Behavior / 4.2.1:
Fatigue Limit Under Fully Reversed Uniaxial Stressing / 4.2.2:
Mean Stress Effects on S-N Behavior / 4.3:
Factors Influencing S-N Behavior / 4.4:
Microstructure / 4.4.1:
Size Effects / 4.4.2:
Surface Finish / 4.4.3:
Frequency / 4.4.4:
S-N Curve Representation and Approximations / 4.5:
Example of Life Estimation Using the S-N Approach / 4.6:
Cyclic Deformation and the Strain-Life ([varepsilon]-N) Approach / 4.7:
Monotonic Tension Test and Stress-Strain Behavior / 5.1:
Strain-Controlled Test Methods / 5.2:
Cycle-Dependent Material Deformation and Cyclic Stress-Strain Behavior / 5.3:
Strain-Based ([varepsilon]-N) Approach to Life Estimation / 5.4:
Determination of Strain-Life Fatigue Properties / 5.5:
Mean Stress Effects / 5.6:
Surface Finish and Other Factors Influencing Strain-Life Behavior / 5.7:
Fundamentals of Lefm and Applications to Fatigue Crack Growth / 5.8:
Lefm Concepts / 6.1:
Loading Modes / 6.1.1:
Stress Intensity Factor, K / 6.1.2:
K Expressions for Common Cracked Members / 6.1.3:
Superposition for Combined Mode I Loading / 6.1.4:
Crack Tip Plastic Zone / 6.2:
Fracture Toughness--K[subscript c], K[subscript Ic] / 6.3:
Fatigue Crack Growth, da/dN-[Detta]K / 6.4:
Sigmoidal da/dN-[Detta]K Curve / 6.4.1:
Constant Amplitude Fatigue Crack Growth Test Methods / 6.4.2:
da/dN-[Detta]K for R = 0 / 6.4.3:
Crack Growth Life Integration Example with No Mean Stress Effects / 6.4.4:
Cyclic Plastic Zone Size / 6.5:
Crack Closure / 6.7:
Small Fatigue Cracks and Lefm Limitations / 6.8:
Plasticity Extension of Lefm and Elastic-Plastic Fracture Mechanics / 6.9:
Notches and Their Effects / 6.10:
Concentrations and Gradients of Stress and Strain / 7.1:
S-N Approach for Notched Members / 7.2:
Notch Sensitivity and the Fatigue Notch Factor, K[subscript f] / 7.2.1:
Effects of Stress Level on Notch Factor / 7.2.2:
Mean Stress Effects and Haigh Diagrams / 7.2.3:
Example of Life Estimation with the S-N Approach / 7.2.4:
Notch Strain Analysis and the Strain-Life Approach / 7.3:
Notch Stresses and Strains / 7.3.1:
Neuber's Rule / 7.3.2:
Strain Energy Density or Glinka's Rule / 7.3.3:
Plane Stress versus Plane Strain / 7.3.4:
Example of Life Estimation Using the Strain-Life Approach / 7.3.5:
Applications of Fracture Mechanics to Crack Growth at Notches / 7.4:
The Two-Stage Approach to Fatigue Life Estimation / 7.5:
Residual Stresses and Their Effects on Fatigue Resistance / 7.6:
Examples / 8.1:
Production of Residual Stresses and Fatigue Resistance / 8.2:
Mechanical Methods / 8.2.1:
Thermal Methods / 8.2.2:
Plating / 8.2.3:
Machining / 8.2.4:
Relaxation of Residual Stresses / 8.3:
Measurement of Residual Stresses / 8.4:
Stress Intensity Factors for Residual Stresses / 8.5:
Fatigue from Variable Amplitude Loading / 8.6:
Spectrum Loads and Cumulative Damage / 9.1:
Damage Quantification and the Concepts of Damage Fraction and Accumulation / 9.2:
Cumulative Damage Theories / 9.3:
Palmgren-Miner Linear Damage Rule / 9.3.1:
Nonlinear Damage Theories / 9.3.2:
Load Interaction and Sequence Effects / 9.4:
Cycle Counting Methods / 9.5:
Rainflow Method / 9.5.1:
Other Cycle Counting Methods / 9.5.2:
Life Estimation Using the Stress-Life Approach / 9.6:
Life Estimation Using the Strain-Life Approach / 9.7:
Crack Growth and Life Estimation Models / 9.8:
Simulating Service Histories in the Laboratory and Digital Prototyping / 9.9:
Laboratory Test Methods / 9.9.1:
Digital Prototyping / 9.9.2:
Multiaxial Stresses / 9.10:
States of Stress and Strain and Proportional versus Nonproportional Loading / 10.1:
Yielding and Plasticity in Multiaxial Fatigue / 10.2:
Stress-Based Criteria / 10.3:
Equivalent Stress Approaches / 10.3.1:
Sines Method / 10.3.2:
Examples Using the Stress-Life Approach / 10.3.3:
Strain-Based, Energy-Based, and Critical Plane Approaches / 10.4:
Strain-Based and Energy-Based Approaches / 10.4.1:
Critical Plane Approaches and the Fatemi-Socie Model / 10.4.2:
Example of Nonproportional Loading / 10.4.3:
Fracture Mechanics Models for Fatigue Crack Growth / 10.5:
Notch Effects and Variable Amplitude Loading / 10.6:
Environmental Effects / 10.7:
Corrosion Fatigue / 11.1:
Stress Corrosion Cracking/Environment-Assisted Cracking / 11.1.1:
Stress-Life (S-N) Behavior / 11.1.2:
Strain-Life ([varepsilon]-N) Behavior / 11.1.3:
Fatigue Crack Growth (da/dN-[Delta]K) Behavior / 11.1.4:
Protection Against Corrosion Fatigue / 11.1.5:
Corrosion Fatigue Life Estimation / 11.1.6:
Fretting Fatigue / 11.1.7:
Mechanisms of Fretting Fatigue / 11.2.1:
Influence of Variables / 11.2.2:
Low-Temperature Fatigue / 11.2.3:
Monotonic Behavior at Low Temperatures / 11.3.1:
Stress-life (S-N) Behavior / 11.3.2:
Strain-life ([varepsilon]-N) Behavior / 11.3.3:
Variable Amplitude Behavior and Fatigue Life Estimation / 11.3.4:
High-Temperature Fatigue / 11.3.6:
Creep Deformation / 11.4.1:
Stress-Strain Behavior Under Cyclic Loading and Hold Times / 11.4.2:
Stress-life (S-N) Creep Behavior / 11.4.3:
Neutron Irradiation / 11.4.4:
Fatigue of Weldments / 12:
Weldment Nomenclature and Discontinuities / 12.1:
Constant Amplitude Fatigue Behavior of Weldments / 12.2:
Crack Growth (da/dN-[Delta]K) Behavior / 12.2.1:
Spot Welds / 12.2.4:
Improving Weldment Fatigue Resistance / 12.3:
Weldment Fatigue Life Estimation / 12.4:
General Weldment Fatigue Life Models / 12.4.1:
Weldment Fatigue Design Codes and Standards / 12.4.2:
Statistical Aspects of Fatigue / 12.5:
Definitions and Quantification of Data Scatter / 13.1:
Probability Distributions / 13.2:
Normal and Log-Normal Distributions / 13.2.1:
Weibull Distributions / 13.2.2:
Estimating Low Probabilities of Failure / 13.2.3:
Tolerance Limits / 13.3:
Regression Analysis of Fatigue Data / 13.4:
Reliability Analysis / 13.5:
Example Problem Using the Weibull Distribution / 13.6:
Material Properties / 13.7:
Monotonic Tensile Properties and Fully Reversed, Bending Unnotched Fatigue Limits, S[subscript f], of Selected Engineering Alloys / Table A.1:
Monotonic, Cyclic, and Strain-Life Properties of Selected Engineering Alloys / Table A.2:
Plane Strain Fracture Toughness, K[subscript Ic], for Selected Engineering Alloys (Plate Stock, L-T Direction Unless Otherwise Specified) / Table A.3:
Fatigue Crack Growth Threshold, [Delta]Kth, for Selected Engineering Alloys / Table A.4:
Corrosion Fatigue Behavior in Water or Salt Water for Life [greater than or equal] 10[superscript 7] Cycles for Selected Engineering Alloys / Table A.5:
Author Index
Subject Index
Preface
Biographical Sketches
Introduction and Historical Overview / 1:
28.

図書

図書
Prepared under the auspices of the Fatigue Design Subcommittee of Division 4 of SAE Iron and Steel Technical Committee. James A. Graham, editor. John F. Millan [and] Franklin J. Appl, assistant editor[s]
出版情報: New York : Society of Automotive Engineers, c1968  xii, 132 p ; 29 cm
シリーズ名: Advances in engineering ; v. 4
所蔵情報: loading…
29.

図書

図書
S. Kocańda
出版情報: Alphen aan den Rijn : Sijthoff & Noordhoff International Publishers, c1978  xii, 367 p. ; 25 cm
シリーズ名: Series on fatigue and fracture ; v. 1
所蔵情報: loading…
30.

図書

図書
editor, ASTM Committee E-9]
出版情報: Philadelphia : ASTM, c1959  v, 121 p. ; 24 cm
シリーズ名: ASTM special technical publication ; no. 237
所蔵情報: loading…
31.

図書

図書
Mirko Klesnil and Petr Lukáš
出版情報: Amsterdam ; New York : Elsevier Scientific Pub. Co. , New York : distribution for the U.S.A. and Canada, Elsevier/North Holland, 1980  239 p. ; 25 cm
シリーズ名: Materials science monographs ; 7
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Cyclic Stress-Strain Response / 2:
Mechanical properties
Microstructure
Theories of hardening and softening
Fatigue-Crack Nucleation / 3:
Stress near surface
Sites of crack initiation
Near-surface dislocation structures
Surface relief and its relation to near-surface dislocation structures
Mechanisms of crack nucleation
Factors influencing crack nucleation
Fatigue-Crack Propagation / 4:
Kinetics of crack growth
Fracture mechanics for fatigue cracks
Quantitative description of fatigue-crack propagation rate and threshold
Properties of plastic zone
Models of fatigue-cracks propagation and thresholds
Effects of miscellaneous factors on the crack-propagation rate
Fatigue-Life Curves / 5:
Fatigue-life curve sgr; a versus Ngr; f
Fatigue-life curve egr; a versus Ngr; f
Transformation of fatigue-life curves
Influence of cycle asymmetry
Hysteresis energy and fatigue life
Fatigue limit
Curves of constant damage
S/N curves of precracked bodies
Influence of temperature on fatigue life
Notched Behaviour / 6:
Stress and strain concentration
Influence of notches on fatigue life
Fatigue Life for Random Loading / 7:
Cyclic plasticity
Analysis of random variations of stress and strain
Prediction of fatigue life
References
Subject Index
Introduction / 1:
Cyclic Stress-Strain Response / 2:
Mechanical properties
32.

図書

図書
Thomas J. Dolan ... [et al.] ; edited by George Sines and J.L. Waisman
出版情報: New York : McGraw-Hill, 1959  x, 415 p. ; 24 cm
シリーズ名: University of California engineering extension series
所蔵情報: loading…
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼