close
1.

図書

図書
Yuli M. Ivanchenko, Alexander A. Lisyansky
出版情報: New York : Springer-Verlag, c1995  xv, 390 p. ; 24 cm
シリーズ名: Graduate texts in contemporary physics
所蔵情報: loading…
2.

図書

図書
Gene F. Mazenko
出版情報: Hoboken, N.J. : Wiley-Interscience, c2003  xvi, 673 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Ordered Phases / 1:
Overview / 1.1:
Order Parameters / 1.2:
Symmetry Breaking / 1.3:
Ferromagnetic Case / 1.3.1:
Spontaneous Symmetry Breaking / 1.3.2:
General Treatment of Symmetries / 1.3.3:
Heisenberg Model and Rotational Invariance / 1.3.4:
Symmetry Breaking Fields / 1.3.5:
Global Gauge Symmetry / 1.3.6:
Local Gauge Symmetry / 1.3.7:
Reduced Symmetries and Solids / 1.3.8:
More Order Parameters / 1.4:
Heisenberg Magnets / 1.4.1:
Superfluid [superscript 4]He / 1.4.2:
Superconductivity / 1.4.3:
Phase Separation in Binary Alloys / 1.4.4:
Order-Disorder Transitions in Binary Alloys / 1.4.5:
Displacive Transitions / 1.4.6:
Ferroelectric and Antiferroelectric Transitions / 1.4.7:
Potts Models / 1.4.8:
Nematic Liquid Crystals / 1.4.9:
Solids / 1.4.10:
Smectic A Liquid Crystals / 1.4.11:
Liquid-Gas Phase Transition / 1.4.12:
Phase Separation of Binary Fluid Mixtures / 1.4.13:
Polymer Mixtures / 1.4.14:
Block Copolymers / 1.4.15:
Phase Transitions and Breakdown of Translational Invariance / 1.5:
Coarse Graining and Effective Hamiltonians / 2:
Introduction / 2.1:
Effective Hamiltonians / 2.2:
Overview of Calculations of Effective Hamiltonians / 2.2.1:
Coarse Graining in a System with a Single Macrovariable / 2.2.3:
Spatial Correlations and Cell Size / 2.2.4:
Effective Hamiltonian: Multiple Macrovariables / 2.3:
Reduced Effective Hamiltonians / 2.4:
Square Gradient Correction / 2.5:
Effective Hamiltonian in the Energy Representation / 2.6:
Mixed Basis Form for the Effective Hamiltonian / 2.7:
Simple Fluids / 2.8:
Examples of Characteristic Lengths / 2.9:
Correlations in a Low-Density Fluid / 2.9.1:
One-Dimensional Ising Model / 2.9.2:
Response Experiments / 2.10:
Microscopic Formulation / 2.10.1:
Example: Paramagnetic Systems / 2.10.2:
Example: Moving Coordinate Systems / 2.10.3:
Effective Hamiltonian Formulation / 2.10.4:
Coarse Graining, Effective Hamiltonians, and the Renormalization Group / 3:
Background / 3.1:
Coarse-Grained Effective Hamiltonians / 3.2:
Landau-Ginzburg-Wilson (LGW) Effective Hamiltonian / 3.3:
Mean-Field Theory / 3.4:
Generalized Equipartition Theorem / 3.5:
Example: Scalar Case / 3.6:
Renormalization Group Transformation / 3.7:
Coarse-Grained Average / 3.7.1:
Landau-Ginzburg-Wilson Example / 3.7.2:
Rescaling / 3.7.3:
Renormalization Group Specification / 3.7.4:
Fixed Points / 3.7.5:
Long-Range Interactions / 3.7.6:
Coarse-Grained Models on Intermediate Length Scales / 3.8:
Soft-Spin Ising Model / 3.8.1:
Treatment of Interactions / 3.8.2:
Evaluation of Coarse-Grained Entropy for a Fluid / 3.8.3:
Coarse-Grained Entropy for Ising Models / 3.8.4:
Fluid Mixtures / 3.8.5:
Density Functional Theory / 3.8.6:
Critical Phenomena / 4:
General Phenomenology / 4.1:
Critical Indices / 4.2:
Series Expansion Studies / 4.2.1:
Experimental Results / 4.2.2:
Universality / 4.2.3:
The Scaling Hypothesis / 4.2.4:
The Landau-Ginzburg-Wilson (LGW) Model / 4.3:
Coarse Graining / 4.3.1:
Role of Fluctuations / 4.3.2:
The Renormalization Group (RG) / 4.5:
Basic Ideas / 4.5.1:
Renormalization Group (RG) Phenomenology Near a Critical Point / 4.5.2:
The Renormalization Group Near Four Dimensions / 4.5.3:
Scaling and the RG / 4.5.4:
Comments on the [epsilon] Expansion / 4.5.5:
Nambu-Goldstone Modes / 5:
Mean-Field Treatment and Broken Continuous Symmetry / 5.1:
Longitudinal Correlations / 5.2.1:
Symmetry Breaking Field / 5.2.2:
Cubic Symmetry / 5.2.3:
Phase Fields / 5.2.4:
Goldstone Theorem / 5.3:
Hohenberg-Mermin-Wagner Theorem / 5.4:
Examples / 5.5:
Classical Magnets / 5.5.1:
Low-Temperature Quantum-Mechanical Implications / 5.5.2:
General Discussion / 5.6.1:
Nonrelativistic Particles / 5.6.2:
Photons / 5.6.3:
Spin Waves: Ferromagnets / 5.6.4:
Spin Waves: Antiferromagnets / 5.6.5:
Gauge Fields and Higgs Phenomena / 5.7:
Dielectric and Magnetic Materials / 6:
Dielectric Materials / 6.1:
Polarization and Maxwell's Equations / 6.2.1:
Experimental Configurations / 6.2.3:
Independent Variables / 6.2.4:
Variational Problem / 6.2.5:
Dipolar Energy / 6.2.6:
Electrostatics / 6.2.7:
Dielectric Slab / 6.2.8:
Materials Parameters / 6.2.9:
The Functional E[P] / 6.2.10:
Stability / 6.2.11:
Fluctuations / 6.2.12:
Thermodynamics / 6.2.13:
Magnetic Materials / 6.3:
Magnetization and Maxwell's Equations / 6.3.1:
Fixed External Currents / 6.3.3:
Fixed Magnetic Induction / 6.3.4:
Fixed External Field at Infinity / 6.3.5:
Cases with Macroscopically Uniform Internal Fields / 6.3.6:
Exchange Contribution to E[M] / 6.3.11:
Magnetostatic Energy / 6.3.12:
Fluctuation Spectrum / 6.3.13:
Phase Transitions and Ordering / 6.3.14:
Polymers / 6.3.15:
Flexible Polymer Chains / 7.1:
Random-Walk Model / 7.2:
Lattice Formulation / 7.2.1:
Continuum Formulation / 7.2.2:
Density Correlations for Ideal Chains / 7.2.3:
Self-Avoiding Walks / 7.3:
Continuous Formulation / 7.3.1:
Perturbation Theory / 7.3.2:
Flory Theory / 7.3.3:
Semidilute Polymer Solutions / 7.3.4:
Screening / 7.4.1:
Screening and Swelling / 7.4.2:
Diblock Copolymers / 7.5:
Neutral Superfluids / 8:
General Comments / 8.1:
Normal Flow / 8.2:
Superfluid Flow / 8.3:
Quantum-Statistical-Mechanical Treatment of Superflow / 8.4:
Interpretation of V[subscript 0] and F[subscript V subscript s] / 8.5:
Superfluid Thermodynamics / 8.6:
The Superfluid Velocity as a Slow Variable / 8.7:
The Effective Hamiltonian / 8.8:
Flow and the LGW Description / 8.9:
Second Sound / 8.10:
Superconductors / 9:
Ginzburg-Landau Effective Hamiltonian / 9.1:
Uniform Solutions and Condensation Energy / 9.2:
Fluctuation Effects and Higgs Phenomena / 9.3:
Meissner Effect and Penetration Depth / 9.4:
Upper Critical Field / 9.5:
Upper Critical Current / 9.6:
Persistent Currents / 9.7:
Dimensionless Variables / 9.8:
Surface Energy / 9.9:
Normal-Superconducting Transition / 9.10:
Liquid Crystals / 10:
Complex Systems / 10.1:
Order Parameter / 10.2:
Potential Part of the Effective Hamiltonian / 10.2.2:
The Gradient Part of the Effective Hamiltonian / 10.2.3:
Spontaneous Fluctuations / 10.2.4:
Walls and Nonuniform Configurations / 10.2.5:
Magnetic Fields / 10.2.7:
The de Gennes Model / 10.3:
Landau Theory / 10.3.2:
Fluctuations and Order / 10.3.3:
Theory of Freezing / 11:
Density Functional Theory of Freezing / 11.2:
Hard-Sphere Fluids / 11.2.1:
Numerical Solution for Face-Centered Cubic (FCC) Lattice / 11.3:
Nambu--Goldstone (NG) Modes and Elastic Theory / 11.4:
Defects / 12:
Scalar Order Parameter Systems and Interfaces / 12.1:
Mean-Field Solution / 12.2.1:
[Psi superscript 4] Theory / 12.2.2:
Asymmetric Case / 12.2.3:
Polymer Mixture / 12.2.4:
Liquid--Gas Interface / 12.2.5:
Broken Translational Symmetry and the NG Modes / 12.2.6:
Finite-Energy Defects / 12.3:
Singularities and Topological Invariants / 12.4:
Topological Stability and Escape to a Higher Dimension / 12.5:
Vortices in XY Models and Neutral Superfluids / 12.6:
Single-Vortex Solution / 12.6.1:
Energy of an Isolated Vortex / 12.6.2:
Phase Field Approximation and Multiple-Vortex Solutions / 12.6.3:
Vortices in Superconductors / 12.7:
Ginzburg--Landau Treatment / 12.7.1:
London Theory / 12.7.2:
Heisenberg Model / 12.8:
Winding Number for an n = 3 Order Parameter / 12.8.1:
LGW Model / 12.8.2:
Avoiding Derrick's Theorem / 12.8.3:
Disclinations and Monopoles in Nematic Liquid Crystals / 12.9:
Phase Field Approximation / 12.9.1:
Defect Core Considerations / 12.9.3:
Monopoles in a Nematic / 12.9.4:
Strings in a Nematic / 12.9.5:
Dislocations and Vacancies in Solids / 12.10:
Elastic Theory and Defects / 12.10.1:
Straight-Line Screw Dislocation / 12.10.3:
Straight-Line End Dislocation / 12.10.4:
Defects in Equilibrium / 13:
Defects in Low Dimension / 13.1:
Kinks in One Dimension / 13.1.1:
Kosterlitz--Thouless Transition in Two-Dimensional Systems / 13.2:
General Considerations / 13.2.1:
Quasi-Long-Range Order / 13.2.2:
Superfluid Density / 13.2.3:
Two-Dimensional Coulomb Gas / 13.2.4:
RG Treatment of Parameters / 13.2.5:
Order Parameter Correlations / 13.2.6:
Block Copolymer Microphase Separation / 13.3:
Ohta--Kawasaki Effective Hamiltonian / 13.3.1:
Lamellar Structure: Weak Segregation / 13.3.2:
Lamellar Structure: Strong Segregation / 13.3.3:
Two- and Three-Dimensional Structures / 13.3.4:
Domains in Ferromagnets / 13.4:
Domain Wall Solutions / 13.4.1:
Bloch Wall Solution / 13.4.3:
Domain Wall Arrays / 13.4.4:
Intermediate State for Type I Superconductors / 13.5:
Magnetic Field / 13.5.1:
Magnetic Energy / 13.5.2:
Minimum Energy / 13.5.3:
Mixed State in Type II Superconductors / 13.6:
Flux Lattice / 13.6.1:
Brief Review of Transformation Theory in Thermodynamics / A:
General Theory / A.1:
Example of a Simple Fluid / A.2:
Gaussian Averages / B:
Functional Differentiation and Integration / C:
Differentiation / C.1:
Integration / C.2:
Fluctuation Contribution to Free Energy / C.3:
Higher-Order Correlation Functions / C.4:
Parameters for the Effective Hamiltonian / C.5:
Quantum-Mechanical Linear Response / D:
Perturbation Theory for Self-Avoiding Walk (SAW) Problem / E:
Monopoles in the n = 3 LGW System / F:
Index
Preface
Ordered Phases / 1:
Overview / 1.1:
3.

図書

図書
by A.Z. Patashinskiĭ and V.L. Pokrovskiĭ ; translated and edited by P. J. Shepherd
出版情報: Oxford ; New York : Pergamon Press, 1979  x, 321 p. ; 26 cm
シリーズ名: International series in natural philosophy ; v. 98
所蔵情報: loading…
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼