close
1.

図書

図書
Joseph H. Koo
出版情報: New York : McGraw-Hill, c2019  xvi, 523 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Nanomaterials, Processing, and Characterization / Part 1:
Introduction to Nanotechnology / 1:
Definition of Nanotechnology / 1.1:
Brief History of Nanotechnology / 1.2:
What Is the Significance of Nanoscale Materials? / 1.3:
Why Is This Nanoscale So Special and Unique? / 1.4:
How Polymer Nanocomposites Work / 1.5:
Strengths and Weaknesses of Nanoparticles / 1.6:
Safety of Nanoparticles / 1.7:
Overview of the Book / 1.8:
Summary / 1.9:
Study Questions / 1.10:
References / 1.11:
Further Reading / 1.12:
An Overview of Nanomaterials / 2:
Introduction / 2.1:
Types of Nanomaterials / 2.2:
One Nanoscale Dimension in the Form of Lamellar / 2.2.1:
Two Nanoscale Dimensions in the Form of Fibers / 2.2.2:
Three Nanoscale Dimensions in the Form of Particulates / 2.2.3:
Selecting Resin Matrix and Nanomaterials for Applications / 2.3:
Characteristics of Polymer Nanocomposites / 3.1:
Different Types of Polymer Nanocomposites / 3.2:
Thermoplastic-Based Nanocomposites / 3.2.1:
Thermoset-Based Nanocomposites / 3.2.2:
Elastomer-Based Nanocomposites / 3.2.3:
Processing of Multifunctional Polymer Nanocomposites / 3.3:
Synthesis Methods / 4.1:
Solution Intercalation / 4.2:
Solution Intercalation from Polymers in Solution / 4.2.1:
Solution Intercalation from Prepolymers in Solution / 4.2.2:
Melt Intercalation / 4.3:
Thermoplastic Nanocomposites / 4.3.1:
Elastomer Nanocomposites / 4.3.2:
Three-Roll Milling / 4.4:
Centrifugal Processing / 4.5:
In Situ Polymerization / 4.6:
Thermoset Nanocomposites / 4.6.1:
Rubber-Modified Epoxy Nanocomposites / 4.6.3:
Emulsion Polymerization / 4.7:
High-Shear Mixing / 4.8:
Ultrasonic Mixing / 4.9:
Structure and Property Characterization / 4.10:
Global Characterization Methods / 5.1:
Optical Microscopy / 5.2:
X-Ray Diffraction / 5.3:
Electron Microscopy and Spectroscopy / 5.4:
Scanning Electron Microscopy (SEM) / 5.4.1:
Transmission Electron Microscopy (TEM) / 5.4.2:
Energy-Dispersive X-Ray Spectroscopy (EDS or EDX) / 5.4.3:
Small-Angle X-Ray Scattering (SAXS) / 5.5:
Scanning Probe Microscopy (SPM) / 5.6:
Scanning Tunneling Microscopy (STM) / 5.6.1:
Atomic Force Microscopy (AFM) / 5.6.2:
Raman Spectroscopy / 5.7:
X-Ray Photoelectron Spectroscopy (XPS) / 5.8:
Other Techniques / 5.9:
Mechanical Properties / 5.10:
Thermal Properties / 5.11:
Thermogravimetric Analysis (TGA) / 5.11.1:
Differential Scanning Calorimetry (DSC) / 5.11.2:
Dynamic Mechanical Thermal Analysis (DMTA) / 5.11.3:
Thermal Conductivity / 5.11.4:
Other Thermal Properties / 5.11.5:
Flammability Properties / 5.12:
Cone Calorimeter (CC) / 5.12.1:
Mass Loss Calorimetry (MLC) / 5.12.2:
Microscale Combustion Calorimetry (MCC) / 5.12.3:
Oxygen Index-Limiting Oxygen Index (LOI) / 5.12.4:
UL 94 / 5.12.5:
Steiner Tunnel Test (ASTM E 84) / 5.12.6:
Ablation Properties / 5.13:
Simulated Solid Rocket Motor (SSRM) / 5.13.1:
Subscale Solid Rocket Motor (Char Motor) / 5.13.2:
Oxyacetylene Test Bed (OTB) / 5.13.3:
Char Strength Sensor / 5.13.4:
In Situ Ablation Recession and Thermal Sensors / 5.13.5:
Electrical Properties / 5.14:
Other Properties / 5.15:
Summary, Future Needs, and Assessments / 5.16:
Multifunctional Properties of Polymer Nanocomposites / 5.17:
Mechanical Properties of Polymer Nanocomposites / 6:
Nanoclay-Based Thermoplastic Nanocomposites / 6.1:
Carbon-Based Thermoplastic Nanocomposites / 6.2.2:
Other Nanomaterial-Based Thermoplastic Nanocomposites / 6.2.3:
Summary of Thermoplastic-Based Nanocomposites / 6.2.4:
Thermoplastic Elastomer-Based Nanocomposites / 6.3:
Nanoclay-Based Thermoplastic Elastomer Nanocomposites / 6.3.1:
Carbon-Based Thermoplastic Elastomer Nanocomposites / 6.3.2:
Other Nanomaterial-Based Thermoplastic Elastomer Nanocomposites / 6.3.3:
Summary of Thermoplastic Elastomer-Based Nanocomposites / 6.3.4:
Epoxy Nanocomposites / 6.4:
Special Types of CNT-Based Thermoset-Based Nanocomposites / 6.4.2:
Summary of Thermoset-Based Nanocomposites / 6.4.3:
Overall Summary / 6.5:
Thermal Properties of Polymer Nanocomposites / 6.6:
Polypropylene-Clay Nanocomposites / 7.1:
PEEK-Carbon Nanofiber Nanocomposites / 7.2.2:
PVC-Layered Double-Hydroxide Nanocomposites / 7.2.3:
Hybrid Systems / 7.2.4:
Summary of Thermal Properties of Thermoplastic-Based Nanocomposites / 7.2.5:
Thermoplastic Polyurethane-Montmorillonite Clay / 7.3:
Thermoplastic Polyurethane-MWNT Nanocomposites / 7.3.2:
Thermoplastic Polyurethane Mixed with Laponite and Cloisite / 7.3.3:
Poly(dimethyl siloxane)/Boron Nitride / 7.3.4:
Polyethylene/Single-Walled Carbon Nanotubes / 7.3.5:
Ethylene Propylene Diene Monomer/ZnO / 7.3.6:
Summary of Thermal Properties of Thermoplastic Elastomer-Based Nanocomposites / 7.3.7:
Thermal Conductivity of Epoxy-Based Nanocomposites / 7.4:
Heterogeneously Structured Conductive Resin Matrix/Graphite Fiber Composite for High Thermal Conductive Structural Applications / 7.4.3:
Summary of Thermal Conductivity Properties of Thermoset-Based Nanocomposites / 7.5:
Phenylethynyl Polyimide-Graphene Oxide Nanocomposites / 7.6:
Summary of Thermal Properties of Thermoset-Based Nanocomposites / 7.7:
Flammability Properties of Polymer Nanocomposites / 7.8:
Thermal and Flame Retardancy Properties of Polymer Nanocomposites / 8.1:
One Nanoscale Dimension-Based Nanocomposites / 8.2.1:
Two Nanoscale Dimensions-Based Nanocomposites / 8.2.2:
Three Nanoscale Dimensions-Based Nanocomposites / 8.2.3:
Multicomponent FR Systems: Polymer Nanocomposites Combined with Additional Materials / 8.2.4:
Flame-Retard ant Mechanisms of Polymer Nanocomposites / 8.3:
Concluding Remarks and Trends of Polymer Nanocomposites / 8.4:
Ablation Properties of Polymer Nanocomposites / 8.5:
Behavior of Thermal Protection Materials / 9.1:
Polymer Nanocomposite Review / 9.3:
Thermoplastic Nanocomposite Studies / 9.3.1:
Polymer-Clay Nanocomposite Studies / 9.3.2:
EPDM Nanocomposite Studies / 9.3.3:
Natural Rubber (NR) and Hydrogenated Nitrite Butadiene Rubber (HNBR) Nanocomposite Studies / 9.3.4:
Thermoplastic Polyurethane Nanocomposite (TPUN) Studies / 9.3.5:
Phenolic Nanocomposite Studies / 9.3.6:
In Situ Ablation Sensing Technology / 9.4:
A Comparison Among the Temperature Profiles of High-, Mid-, and Low-Density Materials / 9.4.1:
Summary and Conclusions of Ablation Recession Rate of Different Types of Ablatives and Future Outlook / 9.4.2:
Overall Summary and Conclusions / 9.5:
Electrical Properties of Polymer Nanocomposites / 9.6:
Electrical Properties of Thermoplastic-Based Nanocomposites / 10.1:
Carbon Nanotube-Reinforced Thermoplastic-Based Nanocomposites / 10.2.1:
Carbon Nanofiber-Reinforced Thermoplastic-Based Nanocomposites / 10.2.2:
Graphite-Reinforced Thermoplastic-Based Nanocomposites / 10.2.3:
Electrical Properties of Thermoset-Based Nanocomposites / 10.3:
Carbon Nanotube-Reinforced Thermoset-Based Nanocomposites / 10.3.1:
Carbon Nanofiber-Reinforced Thermoset-Based Nanocomposites / 10.3.2:
Carbon Black-Reinforced Thermoset-Based Nanocomposites / 10.3.3:
Graphite-Reinforced Thermoset-Based Nanocomposites / 10.3.4:
Electrical Properties of Thermoplastic Elastomer-Based Nanocomposites / 10.4:
Inorganic Filler in Thermoplastic Elastomer-Based Nanocomposites / 10.4.1:
Organic Fillers in Thermoplastic Elastomer-Based Nanocomposites / 10.4.2:
Widespread Properties of Polymer Nanocomposites / 10.5:
Tribological Properties of Polymer Nanocomposites / 11.1:
Abrasion, Wear, and Scratch Resistance Characterization Techniques / 11.2.1:
Wear and Abrasion Resistance of Polymer-Clay Nanocomposites / 11.2.2:
Wear and Scratch Resistance of Polymer-Carbon Nanotube Nanocomposites / 11.2.3:
Wear Resistance of PTFE-Graphene Nanocomposites / 11.2.4:
Summary of Tribological Properties of Polymer Nanocomposites / 11.2.5:
Permeability Properties of Polymer Nanocomposites and Applications of Nanotechnology and Nanomaterials in the Oil Field / 11.3:
Opportunities and Trends for Polymer Nanocomposites / 11.4:
Opportunities, Trends, and Challenges for Nanomaterials and Polymer Nanocomposites / 12:
Government and Commercial Research Opportunities / 12.1:
U.S. Government Research Opportunities, Program Plans, and Progress / 12.2.1:
Commercial Market Opportunities / 12.2.2:
Cost and Property and Geographical Breakdown Analyses / 12.2.3:
Technical and Funding Developments / 12.2.4:
Nanotechnology Research Output / 12.3:
Trend and Forecast / 12.4:
Challenges / 12.5:
Manufacturability of Nanoparticles / 12.5.1:
Manufacturability of Polymer Nanocomposites / 12.5.2:
Concluding Remarks / 12.6:
Index / 12.7:
Preface
Nanomaterials, Processing, and Characterization / Part 1:
Introduction to Nanotechnology / 1:
2.

図書

図書
edited by Nicholas P. Cheremisinoff
出版情報: New York : Marcel Dekker, c1997  xii, 881 p. ; 29 cm
所蔵情報: loading…
目次情報: 続きを見る
Artificial neural networks as a semi-empirical modelling tool for physical property predictions in polymer science
new generation high performance polymers by displacement polymerization
acrylamide polymers
transparent polyolefins
the polyolefins stabilizers with intramolecular synergism
high-temperature stabilization of polyolefins
poly(malic acid) from natural sources
stabilization of polyolefins
gamma radiation induced preparation of polyelectrolytes and its use for waste
Artificial neural networks as a semi-empirical modelling tool for physical property predictions in polymer science
new generation high performance polymers by displacement polymerization
acrylamide polymers
3.

図書

図書
Hiroshi Ito, editor ... [et al.]
出版情報: Washington, DC : American Chemical Society, c1998  xii, 386 p. ; 24 cm
シリーズ名: ACS symposium series ; 706
所蔵情報: loading…
目次情報: 続きを見る
Preface
Novel Patterning Chemistry and Processing
Lithography with a Pattern of Block Copolymer Microdomains as a Positive or Negative Resist / Christopher Harrison ; Miri Park ; Paul M. Chaikin ; Richard A. Register ; Douglas H. Adamson1.:
Inorganic Nanostructures on Surfaces Using Micellar Diblock Copolymer Templates / Joachim P. Spatz ; Thomas Herzog ; Stefan Mossmer ; Paul Ziemann ; Martin Moller2.:
Synthesis of Stereoregular Polymers as Precursors to Highly Conducting Carbon for Use in Applications in Micro- and Nanolithography / C. B. Gorman ; R. W. Vest ; J. L. Snover ; T. L. Utz ; S. A. Serron3.:
Metallization on Poly(tetrafluoroethylene) Substrate by Excimer-Laser-Induced Surface Reaction and Chemical Plating / Hiroyuki Niino ; Akira Yabe4.:
An Inorganic Approach to Photolithography: The Photolithographic Deposition of Dielectric Metal Oxide Films / Ross H. Hill ; Sharon L. Blair5.:
Molding of Polymeric Microstructures / T. Hanemann ; V. Piotter ; R. Ruprecht ; J. H. Hausselt6.:
Microlithographic Chemistry and Processing
Acid Labile Cross-Linked Units: A Concept for Improved Positive Deep-UV Photoresists / H.-T. Schacht ; P. Falcigno ; N. Munzel ; R. Schulz ; A. Medina7.:
Chemistry of Ketal Resist System and Its Lithographic Performance / Wu-Song Huang ; Kim Y. Lee ; Rao Bantu ; Ranee Kwong ; Ahmad Katnani ; Mahmoud Khojasteh ; William Brunsvold ; Steven Holmes ; Ronald Nunes ; Tsuyoshi Shibata ; George Orsula ; James Cameron ; Dominic Yang ; Roger Sinta8.:
Photoacid Diffusion in Chemically Amplified DUV Resists / Toshiro Itani ; Hiroshi Yoshino ; Shuichi Hashimoto ; Mitsuharu Yamana ; Norihiko Samoto ; Kunihiko Kasama9.:
Highly Photosensitive Diazo Compounds as Photoacid Generators for Chemically Amplified Resists / Kieko Harada ; Masahito Kushida ; Kyoichi Saito ; Kazuyuki Sugita ; Hirotada Iida10.:
Exploration of Chemically Amplified Resist Mechanisms and Performance at Small Linewidths / James W. Taylor ; Paul M. Dentinger ; Steven J. Rhyner ; Geoffrey W. Reynolds11.:
The Preparation and Investigation of Macromolecular Architectures for Microlithography by "Living" Free Radical Polymerization / G. G. Barclay ; M. King ; A. Orellana ; P. R. L. Malenfant ; R. Sinta ; E. Malmstrom ; H. Ito ; C. J. Hawker12.:
Acid Proliferation Reactions and Their Application to Chemically Amplified Lithographic Imaging / Kunihiro Ichimura ; Koji Arimitsu ; Soh Noguchi ; Kazuaki Kudo13.:
Advanced Microlithographic Materials Chemistry and Processing
Deprotection Kinetics of Alicyclic Polymer Resist Systems Designed for ArF (193 nm) Lithography / Uzodinma Okoroanyanwu ; Jeffrey D. Byers ; Ti Cao ; Stephen E. Webber ; C. Grant Willson14.:
193 nm Single Layer Resist Based on Poly(norbornene-alt-maleic anhydride) Derivatives: The Interplay of the Chemical Structure of Components and Lithographic Properties / F. M. Houlihan ; A. Timko ; R. Hutton ; R. Cirelli ; J. M. Kometani ; Elsa Reichmanis ; O. Nalamasu15.:
Synthesis and Evaluation of Alicyclic Backbone Polymers for 193 nm Lithography / Hiroshi Ito ; Norbert Seehof ; Rikiya Sato ; Tomonari Nakayama ; Mitsuru Ueda16.:
Progress in 193-nm Single Layer Resists: The Role of Photoacid Generator Structure on the Performance of Positive Resists / Robert D. Allen ; Juliann Opitz ; Carl E. Larson ; Thomas I. Wallow ; Richard A. DiPietro ; Gregory Breyta ; Ratnam Sooriyakumaran ; Donald C. Hofer17.:
Calixarene and Dendrimer as Novel Photoresist Materials / Osamu Haba ; Daisuke Takahashi ; Kohji Haga ; Yoshimasa Sakai18.:
Calixarene Resists for Nanolithography / Yoshitake Ohnishi ; Naoko Wamme ; Jun-ichi Fujita19.:
Design and Preliminary Studies of Environmentally Enhanced Water-Castable, Water-Developable Positive Tone Resists: Model and Feasibility Studies / Jennifer M. Havard ; Dario Pasini ; Jean M. J. Frechet ; David Medeiros ; Shintario Yamada20:
Molecular Design for New Positive Electron-Beam Resists / Yukio Nagasaki21.:
Lithographic Materials and Processes
The Influence of Structure on Dissolution Inhibition for Novolac-Based Photoresists: Adaption of the Probabilistic Approach / Christopher L. McAdams ; Wang Yueh ; Pavlos Tsiartas ; Dale Hsieh22.:
Photoacid Generating Polymers for Surface Modification Resists / Masamitsu Shirai ; Mitsuho Masuda ; Masahiro Tsunooka ; Masayuki Endo ; Takahiro Matsuo23.:
Material Design and Development for Aqueous Base Compatible High-Performance Deep UV Negative-Tone Resists / Pushkara Rao Varanasi ; Phil Brock ; William R. Brunsvold ; Ahmad D. Katnani24.:
Advanced Chemically Amplified Resist Process Using Non-Ammonia Generating Adhesion Promoter / M. Endo ; A. Katsuyama25.:
Post-Exposure Bake Kinetics in Epoxy Novolac-Based Chemically Amplified Resists / P. Argitis ; S. Boyatzis ; I. Raptis ; N. Glezos ; M. Hatzakis26.:
Alkali-Developable Positive-Photosensitive Polyimide Based on Diazonaphthoquinone Sensitizer / T. Ueno ; Y. Okabe ; T. Miwa ; Y. Maekawa ; G. Rames-Langlade27.:
Author Index
Subject Index
Preface
Novel Patterning Chemistry and Processing
Lithography with a Pattern of Block Copolymer Microdomains as a Positive or Negative Resist / Christopher Harrison ; Miri Park ; Paul M. Chaikin ; Richard A. Register ; Douglas H. Adamson1.:
4.

図書

図書
J.E. Mark, editor, C.Y-C Lee, editor, P.A. Bianconi, editor
出版情報: Washington, D.C. : American Chemical Society, 1995  xi, 378 p. ; 24 cm
シリーズ名: ACS symposium series ; 585
所蔵情報: loading…
5.

図書

図書
A. A. Berlin ... [et al.] ; [editors, G. Henrici-Olivé, S. Olivé]
出版情報: Berlin ; New York : Springer-Verlag, c1986  x, 124 p. ; 25 cm
シリーズ名: Polymers, properties and applications ; 10
所蔵情報: loading…
6.

図書

図書
edited by Klaus Friedrich
出版情報: Amsterdam ; Tokyo : Elsevier, 1986  xii, 465 p. ; 25 cm
シリーズ名: Composite materials series ; 1
所蔵情報: loading…
7.

図書

図書
editor, F.R. Jones
出版情報: Burnt Mill, Harlow, Essex : Longman Scientific & Technical, 1994  xiv, 418 p. ; 24 cm
シリーズ名: Polymer science and technology series
所蔵情報: loading…
8.

図書

図書
edited by Güneri Akovali
出版情報: Dordrecht ; Boston : Kluwer Academic, c1993  xvii, 455 p. ; 25 cm
シリーズ名: NATO ASI series ; ser.E . Applied sciences ; v. 230
所蔵情報: loading…
9.

図書

図書
Frederic Neil Cogswell
出版情報: Oxford [England] : Butterworth-Heinemann, 1992  viii, 277 p. ; 25 cm
所蔵情報: loading…
10.

図書

図書
edited by Mohsen Shahinpoor
出版情報: Cambridge : Royal Society of Chemistry, 2016-  2 v. ; 24 cm
シリーズ名: RSC smart materials ; no. 17
所蔵情報: loading…
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼