close
1.

図書

図書
Christian Fries
出版情報: New Jersey : John Wiley & Sons, c2007  xxii, 520 p. ; 25 cm
所蔵情報: loading…
2.

電子ブック

EB
Christian Fries
出版情報: [S.l.] : Wiley Online Library, [20--]  1 online resource (xxii, 520 p.)
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Theory, Modeling and Implementation / 1.1:
Interest Rate Models and Interest Rate Derivatives / 1.2:
How to Read this Book / 1.3:
Abridged Versions / 1.3.1:
Special Sections / 1.3.2:
Notation / 1.3.3:
Foundations / I:
Probability Theory / 2:
Stochastic Processes / 2.2:
Filtration / 2.3:
Brownian Motion / 2.4:
Wiener Measure, Canonical Setup / 2.5:
Itô Calculus / 2.6:
Itô Integral / 2.6.1:
Itô Process / 2.6.2:
Itô Lemma and Product Rule / 2.6.3:
Brownian Motion with Instantaneous Correlation / 2.7:
Martingales / 2.8:
Change of Measure (Girsanov, Cameron, Martin / 2.8.1 Martingale Representation Theorem:
Stochastic Integration / 2.10:
Partial Differential Equations (PDE / 2.11:
Feynman-Kac Theorem / 2.11.1:
List of Symbols / 2.12:
Replication / 3:
Replication Strategies / 3.1:
Replication in a discrete Model / 3.1.1:
Foundations: Equivalent Martingale Measure / 3.2:
Challenge and Solution Outline / 3.2.1:
Steps towards the Universal Pricing Theorem / 3.2.2:
Excursus: Relative Prices and Risk Neutral Measures / 3.3:
Why relative prices? / 3.3.1:
Risk Neutral Measure / 3.3.2:
First Applications / II:
Pricing of a European Stock Option under the Black-Scholes Model / 4:
Excursus: The Density of the Underlying of a European Call Option / 5:
Excursus: Interpolation of European Option Prices / 6:
No-Arbitrage Conditions for Interpolated Prices / 6.1:
Arbitrage Violations through Interpolation / 6.2:
Example (1): Interpolation of four Prices / 6.2.1:
Example (2): Interpolation of two Prices / 6.2.2:
Arbitrage-Free Interpolation of European Option Prices / 6.3:
Hedging in Continuous and Discrete Time and the Greeks / 7:
Deriving the Replications Strategy from Pricing Theory / 7.1:
Deriving the Replication Strategy under the Assumption of a Locally Riskless Product / 7.2.1:
The Black-Scholes Differential Equation / 7.2.2:
Example: Replication Portfolio and PDE under a Black-Scholes Model / 7.2.3:
Greeks / 7.3:
Greeks of a European Call-Option under the Black-Scholes model / 7.3.1:
Hedging in Discrete Time: Delta and Delta-Gamma Hedging / 7.4:
Delta Hedging / 7.4.1:
Error Propagation / 7.4.2:
Delta-Gamma Hedging / 7.4.3:
Vega Hedging / 7.4.4:
Hedging in Discrete Time: Minimizing the Residual Error (Bouchaud-Sornette Method / 7.5:
Minimizing the Residual Error at Maturity T / 7.5.1:
Minimizing the Residual Error in each Time Step / 7.5.2:
Interest Rate Structures, Interest Rate Products And Analytic Pricing Formulas / III:
Interest Rate Structures / Motivation and Overview:
Fixing Times and Tenor Times / 8.1:
Definitions / 8.2:
Interest Rate Curve Bootstrapping / 8.3:
Interpolation of Interest Rate Curves / 8.4:
Implementation / 8.5:
Simple Interest Rate Products / 9:
Interest Rate Products Part 1: Products without Optionality / 9.1:
Fix, Floating and Swap / 9.1.1:
Money-Market Account / 9.1.2:
Interest Rate Products Part 2: Simple Options / 9.2:
Cap, Floor, Swaption / 9.2.1:
Foreign Caplet, Quanto / 9.2.2:
The Black Model for a Caplet / 10:
Pricing of a Quanto Caplet / Modeling the FFX11:
Choice of Numéraire / 11.1:
Exotic Derivatives / 12:
Prototypical Product Properties / 12.1:
Interest Rate Products Part 3: Exotic Interest Rate Derivatives / 12.2:
Structured Bond, Structured Swap, Zero Structure / 12.2.1:
Bermudan Option / 12.2.2:
Bermudan Callable and Bermudan Cancelable / 12.2.3:
Compound Options / 12.2.4:
Trigger Products / 12.2.5:
Structured Coupons / 12.2.6:
Shout Options / 12.2.7:
Product Toolbox / 12.3:
Discretization And Numerical Valuation Methods / IV:
Discretization of time and state space / 13:
Discretization of Time: The Euler and the Milstein Scheme / 13.1:
Time-Discretization of a Lognormal Process / 13.1.1:
Discretization of Paths (Monte-Carlo Simulation) / 13.2:
Monte-Carlo Simulation / 13.2.1:
Weighted Monte-Carlo Simulation / 13.2.2:
Review / 13.2.3:
Discretization of State Space / 13.3:
Backward-Algorithm / 13.3.1:
Path Simulation through a Lattice: Two Layers / 13.3.3:
Numerical Methods for Partial Differential Equations / 14:
Pricing Bermudan Options in a Monte Carlo Simulation / 15:
Bermudan Options: Notation / 15.1:
Bermudan Callable / 15.2.1:
Relative Prices / 15.2.2:
Bermudan Option as Optimal Exercise Problem / 15.3:
Bermudan Option Value as single (unconditioned) Expectation: The Optimal Exercise Value / 15.3.1:
Bermudan Option Pricing - The Backward Algorithm / 15.4:
Re-simulation / 15.5:
Perfect Foresight / 15.6:
Conditional Expectation as Functional Dependence / 15.7:
Binning / 15.8:
Binning as a Least-Square Regression / 15.8.1:
Foresight Bias / 15.9:
Regression Methods - Least Square Monte-Carlo / 15.10:
Least Square Approximation of the Conditional Expectation / 15.10.1:
Example: Evaluation of a Bermudan Option on a Stock / Backward Algorithm with Conditional Expectation Estimator15.10.2:
Example: Evaluation of a Bermudan Callable / 15.10.3:
Binning as linear Least-Square Regression / 15.10.4:
Optimization Methods / 15.11:
Andersen Algorithm for Bermudan Swaptions / 15.11.1:
Review of the Threshold Optimization Method / 15.11.2:
Optimization of Exercise Strategy: A more general Formulation / 15.11.3:
Comparison of Optimization Method and Regression Method / 15.11.4:
Duality Method: Upper Bound for Bermudan Option Prices / 15.12:
American Option Evaluation as Optimal Stopping Problem / 15.12.1:
Primal-Dual Method: Upper and Lower Bound / 15.13:
Pricing Path-Dependent Options in a Backward Algorithm / 16:
Evaluation of a Snowball / Memory in a Backward Algorithm / 16.1:
Evaluation of a Flexi Cap in a Backward Algorithm / 16.2:
Sensitivities / Partial Derivatives) of Monte Carlo Prices17:
Problem Description / 17.1:
Pricing using Monte-Carlo Simulation / 17.2.1:
Sensitivities from Monte-Carlo Pricing / 17.2.2:
Example: The Linear and the Discontinuous Payout / 17.2.3:
Example: Trigger Products / 17.2.4:
Generic Sensitivities: Bumping the Model / 17.3:
Sensitivities by Finite Differences / 17.4:
Example: Finite Differences applied to Smooth and Discontinuous Payout / 17.4.1:
Sensitivities by Pathwise Differentiation / 17.5:
Example: Delta of a European Option under a Black-Scholes Model / 17.5.1:
Pathwise Differentiation for Discontinuous Payouts / 17.5.2:
Sensitivities by Likelihood Ratio Weighting / 17.6:
Example: Delta of a European Option under a Black-Scholes Model using Pathwise Derivative / 17.6.1:
Example: Variance Increase of the Sensitivity when using Likelihood Ratio Method for Smooth Payouts / 17.6.2:
Sensitivities by Malliavin Weighting / 17.7:
Proxy Simulation Scheme / 17.8:
Proxy Simulation Schemes for Monte Carlo Sensitivities and Importance Sampling / 18:
Full Proxy Simulation Scheme / 18.1:
Calculation of Monte-Carlo weights / 18.1.1:
Sensitivities by Finite Differences on a Proxy Simulation Scheme / 18.2:
Localization / 18.2.1:
Object-Oriented Design / 18.2.2:
Importance Sampling / 18.3:
Example / 18.3.1:
Partial Proxy Simulation Schemes / 18.4:
Linear Proxy Constraint / 18.4.1:
Comparison to Full Proxy Scheme Method / 18.4.2:
Non-Linear Proxy Constraint / 18.4.3:
Transition Probability from a Nonlinear Proxy Constraint / 18.4.4:
Sensitivity with respect to the Diffusion Coefficients - Vega / 18.4.5:
Example: LIBOR Target Redemption Note / 18.4.6:
Example: CMS Target Redemption Note / 18.4.7:
Pricing Models For Interest Rate Derivatives / V:
LIBOR Market Models / 19:
LIBOR Market Model / 19.1:
Derivation of the Drift Term / 19.1.1:
Discretization and (Monte-Carlo) Simulation / 19.1.2:
Calibration - Choice of the free Parameters / 19.1.4:
Interpolation of Forward Rates in the LIBOR Market Model / 19.1.5:
Object Oriented Design / 19.2:
Reuse of Implementation / 19.2.1:
Separation of Product and Model / 19.2.2:
Abstraction of Model Parameters / 19.2.3:
Abstraction of Calibration / 19.2.4:
Swap Rate Market Models (Jamshidian 1997 / 19.3:
The Swap Measure / 19.3.1:
Swap Rate Market Models / 19.3.2:
Terminal Correlation examined in a LIBOR Market Model Example / 20.1:
De-correlation in a One-Factor Model / 20.2.1:
Impact of the Time Structure of the Instantaneous Volatility on Caplet and Swaption Prices / 20.2.2:
The Swaption Value as a Function of Forward Rates / 20.2.3:
Terminal Correlation is dependent on the Equivalent Martingale Measure / 20.3:
Dependence of the Terminal Density on the Martingale Measure / 20.3.1:
Excursus: Instantaneous Correlation and Terminal Correlation / 21:
Short Rate Process in the HJM Framework / 21.1:
The HJM Drift Condition / 21.2:
Heath-Jarrow-Morton Framework: Foundations / 22:
The Market Price of Risk / 22.1:
Overview: Some Common Models / 22.3:
Implementations / 22.4:
Monte-Carlo Implementation of Short-Rate Models / 22.4.1:
Lattice Implementation of Short-Rate Models / 22.4.2:
Short-Rate Models / 23:
Short Rate Models in the HJM Framework / 23.1:
Example: The Ho-Lee Model in the HJM Framework / 23.1.1:
Example: The Hull-White Model in the HJM Framework / 23.1.2:
LIBOR Market Model in the HJM Framework / 23.2:
HJM Volatility Structure of the LIBOR Market Model / 23.2.1:
LIBOR Market Model Drift under the QB Measure / 23.2.2:
LIBOR Market Model as a Short Rate Model / 23.2.3:
Heath-Jarrow-Morton Framwork: Immersion of Short-Rate Models and LIBOR Market Model / 24:
Model / 24.1:
Interpretation of the Figures / 24.2:
Mean Reversion / 24.3:
Factors / 24.4:
Exponential Volatility Function / 24.5:
Instantaneous Correlation / 24.6:
Excursus: Shape of teh Interst Rate Curve under Mean Reversion and a Multifactor Model / 25:
Cheyette Model / 25.1:
Ritchken-Sakarasubramanian Framework: JHM with Low Markov Dimension / 26:
The Markov Functional Assumption / independent of the model considered)26.1:
Outline of this Chapter / 26.1.2:
Equity Markov Functional Model / 26.2:
Markov Functional Assumption / 26.2.1:
Example: The Black-Scholes Model / 26.2.2:
Numerical Calibration to a Full Two-Dimensional European Option Smile Surface / 26.2.3:
Interest Rates / 26.2.4:
Model Dynamics / 26.2.5:
LIBOR Markov Functional Model / 26.2.6:
LIBOR Markov Functional Model in Terminal Measure / 26.3.1:
LIBOR Markov Functional Model in Spot Measure / 26.3.2:
Remark on Implementation / 26.3.3:
Change of numéraire in a Markov-Functional Model / 26.3.4:
Implementation: Lattice / 26.4:
Convolution with the Normal Probability Density / 26.4.1:
State space discretization Markov Functional Models / 26.4.2:
Extended Models. / Part VI:
Introduction - Different Types of Spreads / 27.1:
Spread on a Coupon / 27.1.1:
Credit Spread / 27.1.2:
Defaultable Bonds / 27.2:
Integrating deterministic Credit Spread into a Pricing Model / 27.3:
Deterministic Credit Spread / 27.3.1:
Receiver's and Payer's Credit Spreads / 27.3.2:
Example: Defaultable Forward Starting Coupon Bond / 27.4.1:
Example: Option on a Defaultable Coupon Bond / 27.4.2:
Credit Spreads / 28:
Cross Currency LIBOR Market Model / 28.1:
Derivation of the Drift Term under Spot-Measure / 28.1.1:
Equity Hybrid LIBOR Market Model / 28.1.2:
Equity-Hybrid Cross-Currency LIBOR Market Model / 28.2.1:
Summary / 28.3.1:
Hybrid Models / 28.3.2:
Elements of Object Oriented Programming: Class and Objects / 29.1:
Example: Class of a Binomial Distributed Random Variable / 29.1.1:
Constructor / 29.1.2:
Methods: Getter, Setter, Static Methods / 29.1.3:
Principles of Object Oriented Programming / 29.2:
Encapsulation and Interfaces / 29.2.1:
Abstraction and Inheritance / 29.2.2:
Polymorphism / 29.2.3:
Example: A Class Structure for One Dimensional Root Finders / 29.3:
Root Finder for General Functions / 29.3.1:
Root Finder for Functions with Analytic Derivative: Newton Method / 29.3.2:
Root Finder for Functions with Derivative Estimation: Secant Method / 29.3.3:
Anatomy of a JavaÖ Class / 29.4:
Libraries / 29.5:
JavaÖ2 Platform, Standard Edition (j2se / 29.5.1:
JavaÖ2 Platform, Enterprise Edition (j2ee / 29.5.2:
Colt / 29.5.3:
Commons-Math: The Jakarta Mathematics Library / 29.5.4:
Some Final Remarks / 29.6:
Object Oriented Design (OOD) / Unified Modeling Language / 29.6.1:
Appendices / Part VII:
A small Collection of Common Misconceptions / A:
Tools (Selection / B:
Linear Regression / B.1:
Generation of Random Numbers / B.2:
Uniform Distributed Random Variables / B.2.1:
Transformation of the Random Number Distribution via the Inverse Distribution Function / B.2.2:
Normal Distributed Random Variables / B.2.3:
Poisson Distributed Random Variables / B.2.4:
Generation of Paths of an n-dimensional Brownian Motion / B.2.5:
Factor Decomposition - Generation of Correlated Brownian Motion / B.3:
Factor Reduction / B.4:
Optimization (one-dimensional): Golden Section Search / B.5:
Convolution with Normal Density / B.6:
Exercises / C:
JavaÖ Source Code (Selection / D:
JavaÖ Classes for Chapter 29 / E.1:
Introduction / 1:
Theory, Modeling and Implementation / 1.1:
Interest Rate Models and Interest Rate Derivatives / 1.2:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼