close
1.

図書

図書
Merle C. Potter, Jack L. Lessing, Edward F. Aboufadel
出版情報: Cham. Switzerland : Springer Nature Switzerland, c2019  xiv, 739 p. ; 26 cm
所蔵情報: loading…
2.

図書

図書
Allan Struthers, Merle Potter
出版情報: Cham : Springer, c2019  xvii, 514 p. ; 26 cm
所蔵情報: loading…
3.

図書

図書
Merle C. Potter and David C. Wiggert with Midhat Hondzo
出版情報: Upper Saddle River, NJ : Prentice Hall, c1997  xv, 752 p. ; 27 cm
所蔵情報: loading…
4.

図書

図書
Merle C. Potter and John F. Foss
出版情報: New York : Ronald Press Co., c1975  x, 588 p. ; 24 cm
所蔵情報: loading…
5.

図書

図書
Merle C. Potter, Elaine P. Scott
出版情報: Belmont, CA : Brooks/Cole, c2004  xviii, 772 p. ; 25 cm.
所蔵情報: loading…
目次情報: 続きを見る
Introduction to Thermal Sciences
Thermodynamics / Part 1:
Concepts, Definitions, and Basic Principles / Chapter 1:
Introduction / 1.1:
Thermodynamic Systems and Control Volumes / 1.2:
Macroscopic Description / 1.3:
Properties and State of a System / 1.4:
Equilibrium, Processes, and Cycles / 1.5:
Units / 1.6:
Density, Specific Volume, and Specific Weight / 1.7:
Pressure / 1.8:
Temperature / 1.9:
Energy / 1.10:
Summary / 1.11:
Properties of Pure Substances / Chapter 2:
The p-v-T Surface / 2.1:
The Liquid-Vapor Region / 2.3:
Properties of Steam / 2.4:
Steam Tables / 2.4.1:
TK Solver / 2.4.2:
Equations of State / 2.5:
Equations of State for a Nonideal Gas / 2.6:
Work and Heat / 2.7:
Definition of Work / 3.1:
Quasi-equilibrium Work Due to a Moving Boundary / 3.3:
Nonequilibrium Work / 3.4:
Other Work Modes / 3.5:
Heat Transfer / 3.6:
Conduction / 3.6.1:
Convection / 3.6.2:
Radiation / 3.6.3:
The First Law of Thermodynamics / 3.7:
The First Law Applied to a Cycle / 4.1:
The First Law Applied to a Process / 4.3:
Enthalpy / 4.4:
Latent Heat / 4.5:
Specific Heats / 4.6:
The First Law Applied to Systems / 4.7:
General Formulation for Control Volumes / 4.8:
The First Law Applied to Control Volumes / 4.9:
Transient Flow / 4.10:
The First Law with Heat Transfer Applications / 4.11:
The Second Law of Thermodynamics / 4.12:
Heat Engines, Heat Pumps, and Refrigerators / 5.1:
Statements of the Second Law of Thermodynamics / 5.3:
Reversibility / 5.4:
The Carnot Engine / 5.5:
Carnot Efficiency / 5.6:
Entropy / 5.7:
Entropy for an Ideal Gas with Constant Specific Heats / 5.8:
Entropy for an Ideal Gas with Variable Specific Heats / 5.9:
Entropy Change for Substances Such As Steam, Solids, and Liquids / 5.10:
The Inequality of Clausius / 5.11:
Entropy Change for an Irreversible Process / 5.12:
The Second Law Applied to a Control Volume / 5.13:
Power and Refrigeration Vapor Cycles / 5.14:
The Rankine Cycle / 6.1:
A Possible Steam Carnot Cycle / 6.3:
Rankine Cycle Efficiency / 6.4:
The Reheat Cycle / 6.5:
The Regenerative Cycle / 6.6:
Effect of Losses on Power Cycle Efficiency / 6.7:
The Vapor-Refrigeration Cycle / 6.8:
The Heat Pump / 6.9:
Power and Refrigeration Gas Cycles / 6.10:
The Air-Standard Cycle / 7.1:
The Carnot Cycle / 7.3:
The Otto Cycle / 7.4:
The Diesel Cycle / 7.5:
The Brayton Cycle / 7.6:
The Regenerative Brayton Cycle / 7.7:
The Combined Brayton-Rankine Cycle / 7.8:
The Gas-Refrigeration Cycle / 7.9:
Psychrometrics / 7.10:
Gas-Vapor Mixtures / 8.1:
Adiabatic Saturation and Wet-Bulb Temperatures / 8.3:
The Psychrometric Chart / 8.4:
Air-Conditioning Processes / 8.5:
Combustion / 8.6:
Combustion Equations / 9.1:
Enthalpy of Formation, Enthalpy of Combustion, and the First Law / 9.2:
Adiabatic Flame Temperature / 9.3:
Fluid Mechanics / 9.4:
Basic Considerations / Chapter 10:
Dimensions, Units, and Physical Quantities / 10.1:
Continuum View of Gases and Liquids / 10.3:
Pressure and Temperature Scales / 10.4:
Fluid Properties / 10.5:
Density and Specific Weight / 10.5.1:
Viscosity / 10.5.2:
Compressibility / 10.5.3:
Surface Tension / 10.5.4:
Vapor Pressure / 10.5.5:
Conservation Laws / 10.6:
Thermodynamic Properties and Relationships / 10.7:
Properties of an Ideal Gas / 10.7.1:
First Law of Thermodynamics / 10.7.2:
Other Thermodynamic Quantities / 10.7.3:
Fluid Statics / 10.8:
Pressure at Point / 11.1:
Pressure Variation / 11.3:
Fluids at Rest / 11.4:
Pressures in Liquids at Rest / 11.4.1:
Pressures in the Atmosphere / 11.4.2:
Manometers / 11.4.3:
Forces on Plane Areas / 11.4.4:
Forces on Curved Surfaces / 11.4.5:
Buoyancy / 11.4.6:
Linearly Accelerating Containers / 11.5:
Rotating Containers / 11.6:
Introduction to Fluids in Motion / 11.7:
Description of Fluid Motion / 12.1:
Lagrangian and Eulerian Disciplines of Motion / 12.2.1:
Pathlines, Streaklines, and Streamlines / 12.2.2:
Acceleration / 12.2.3:
Angular Velocity and Vorticity / 12.2.4:
Classification of Fluid Flows / 12.3:
One-, Two-, and Three-Dimensional Flows / 12.3.1:
Viscous and Inviscid Flows / 12.3.2:
Laminar and Turbulent Flows / 12.3.3:
Incompressible and Compressible Flows / 12.3.4:
The Bernoulli Equation / 12.4:
The Integral Forms of the Fundamental Laws / 12.5:
The Three Basic Laws / 13.1:
System-to-Control-Volume Transformation / 13.3:
Simplifications of the System-to-Control-Volume Transformation / 13.3.1:
Conservation of Mass / 13.4:
Energy Equation / 13.5:
Work-Rate Term / 13.5.1:
General Energy Equation / 13.5.2:
Steady Uniform Flow / 13.5.3:
Steady Nonuniform Flow / 13.5.4:
Momentum Equation / 13.6:
General Momentum Equation / 13.6.1:
Momentum Equation Applied to Deflectors / 13.6.2:
Dimensional Analysis and Similitude / 13.6.4:
Dimensional Analysis / 14.1:
Motivation / 14.2.1:
Review of Dimensions / 14.2.2:
Buckingham [pi]-Theorem / 14.2.3:
Common Dimensionless Parameters / 14.2.4:
Similitude / 14.3:
General Information / 14.3.1:
Confined Flows / 14.3.2:
Free-Surface Flows / 14.3.3:
High-Reynolds-Number Flows / 14.3.4:
Compressible Flows / 14.3.5:
Periodic Flows / 14.3.6:
Internal Flows / 14.4:
Entrance Flow and Developed Flow / 15.1:
Laminar Flow in a Pipe / 15.3:
Laminar Flow between Parallel Plates / 15.4:
Laminar Flow between Rotating Cylinders / 15.5:
Turbulent Flow in a Pipe / 15.6:
Differential Equation / 15.6.1:
Velocity Profile / 15.6.2:
Losses in Developed Pipe Flow / 15.6.3:
Losses in Noncircular Conduits / 15.6.4:
Minor Losses in Pipe Flow / 15.6.5:
Hydraulic and Energy Grade Lines / 15.6.6:
Simple Pipe System with a Pump / 15.6.7:
Uniform Turbulent Flow in Open Channels / 15.7:
External Flows / 15.8:
Separation / 16.1:
Flow around Immersed Bodies / 16.3:
Drag Coefficients / 16.3.1:
Vortex Shedding / 16.3.2:
Streamlining / 16.3.3:
Cavitation / 16.3.4:
Added Mass / 16.3.5:
Lift and Drag on Airfoils / 16.4:
Potential Flow Theory / 16.5:
Basic Flow Equations / 16.5.1:
Simple Solutions / 16.5.2:
Superposition / 16.5.3:
Boundary Layer Theory / 16.6:
General Background / 16.6.1:
Von Karman Integral Equation / 16.6.2:
Approximate Solution to the Laminar Boundary Layer / 16.6.3:
Turbulent Boundary Layer: Power-Law Form / 16.6.4:
Turbulent Boundary Layer: Empirical Form / 16.6.5:
Convection Heat Transfer / 16.6.6:
Pressure Gradient Effects / 16.6.7:
Compressible Flow / 16.7:
Speed of Sound and the Mach Number / 17.1:
Isentropic Nozzle Flow / 17.3:
Normal Shock Wave / 17.4:
Shock Waves in Converging-Diverging Nozzles / 17.5:
Oblique Shock Waves / 17.6:
Isentropic Expansion Waves / 17.7:
Appendix / 17.8:
Units and Conversions / A.:
Material Properties / B.:
Thermodynamic Properties of Water (Steam Tables) / C.:
Thermodynamic Properties of Freon 12 / D.:
Thermodynamic Properties of Ammonia / E.:
Ideal-Gas Tables / F.:
Psychrometric Charts / G.:
Compressibility Chart / H.:
Compressible-Flow Tables for Air / I.:
Properties of Areas and Volumes / J.:
Vector Relations / K.:
Answers to Selected Problems
Index
Introduction to Thermal Sciences
Thermodynamics / Part 1:
Concepts, Definitions, and Basic Principles / Chapter 1:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼