close
1.

図書

図書
Arieh Ben-Naim
出版情報: Hackensack, N.J. : World Scientific, c2009-  v. ; 24 cm
所蔵情報: loading…
2.

図書

図書
Arieh Ben-Naim, Diego Casadei
出版情報: Hackensack, N.J. : World Scientific, c2017  xvi, 355 p. ; 23 cm
所蔵情報: loading…
3.

図書

図書
Arieh Ben-Naim
出版情報: New York : Plenum Press, 1980  xiii, 311 p. ; 24 cm
所蔵情報: loading…
4.

図書

図書
[by] Arieh Ben-Naim
出版情報: New York : Plenum Press, [1974]  xvi, 474 p. ; 24 cm
所蔵情報: loading…
5.

図書

図書
Arieh Ben-Naim
出版情報: Singapore : World Scientific, 2012  xxvii, 263 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
List of Abbreviations
Introduction: From Heat Engines to Disorder, Information Spreading, Freedom, and More … / Chapter 1:
The Macroscopic Formulation of the Second Law / 1.1:
The Microscopic Definition of Entropy / 1.2:
The Relentless and Never-Ending Search for a Simple, Intuitive and Qualitative Interpretation of Entropy / 1.3:
The Association of Entropy with Disorder / 1.3.1:
The Association of Entropy with Spreading/Dispersion/Sharing / 1.3.2:
The Association of Entropy with Information / 1.3.3:
A Stringent Test of the Validity of any Interpretation of Entropy / 1.4:
Forget about Entropy for a While, Let us Go and Play iGames / Chapter 2:
Warm-Up with the 20-Question (20-Q) Game / 2.1:
Definition of ShannonÆs Measure of Information for a Uniformly Distributed 20-Question Game / 2.2:
The Case of Two Outcomes / 2.3:
ShannonÆs Measure of Information (SMI) for the General Distribution / 2.4:
Definition of ShannonÆs Measure of Information / 2.4.1:
Some Elementary Properties of the Function H / 2.4.2:
The Case of an Infinite Number of Outcomes / 2.4.3:
The Various Interpretations of the Quantity H / 2.5:
Conditional and Mutual Information / 2.6:
Summary of What We Have Learnt in this Chapter / 2.7:
The Astounding Emergence of the Entropy of a Classical Ideal Gas out of ShannonÆs Measure of Information / Chapter 3:
The Locational SMI of an Ideal Gas / 3.1:
Mutual Information due to Indistinguishability of Particles / 3.2:
The Momentum SMI / 3.3:
Mutual Information Associated with the Uncertainty Principle / 3.4:
Entropy of a Classical Ideal Gas / 3.5:
Fundamental Properties of the Entropy Function S(E,V,N) / 3.6:
Concluding Remarks / 3.7:
Examples and Their Interpretations. Challenges for any Descriptor of Entropy / Chapter 4:
Expansion of an Ideal Gas / 4.1:
Processes Involving Mixing of Two Ideal Gases / 4.2:
Pure Mixing of Two Ideal Gases / 4.2.1:
Mixing and Expansion of Two Ideal Gases / 4.2.2:
Demixing and Expansion of Two Ideal Gases / 4.2.3:
Processes Involving Assimilation of Ideal Gases / 4.3:
Pure Assimilation Process / 4.3.1:
Assimilation and Expansion Processes / 4.3.2:
A Spontaneous Process Involving Pure Deassimilation / 4.3.3:
Derealization Process and Communal Entropy / 4.3.4:
Expansion of an Ideal Gas in a Gravitational Field / 4.4:
Processes Involving Changes in the Velocity Distribution / 4.5:
The Effect of Intermolecular Interactions / 4.6:
Three Challenging Processes / 4.7:
Conclusion / 4.8:
Finally, Let Us Discuss the Most Mysterious Second Law of Thermodynamics / Chapter 5:
What Drives a Spontaneous Process? / 5.1:
What Drives the Entropy Upwards / 5.2:
Heat Flow between the Two Compartments / 5.3:
How Did the System Evolve? / 5.4:
The Association of the Second Law with the Arrow of Time / 5.5:
Does Life "Emerge" from the Second Law or Does It Defy It? / 5.6:
Appendix A / 5.7:
Epilogue
Notes
References and Suggested Reading
Index
Preface
Acknowledgments
List of Abbreviations
6.

図書

図書
Arieh Ben-Naim
出版情報: Singapore : World Scientific, c2008  xxv, 384 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
List of Abbreviations
Preface
Introduction / 1:
A Brief History of Temperature and Entropy / 1.1:
The Association of Entropy with Disorder / 1.2:
The Association of Entropy with Missing Information / 1.3:
Elements of Probability Theory / 2:
The Axiomatic Approach / 2.1:
The sample space, denoted [Omega] / 2.2.1:
The field of events, denoted F / 2.2.2:
The probability function, denoted P / 2.2.3:
The Classical Definition / 2.3:
The Relative Frequency Definition / 2.4:
Independent Events and Conditional Probability / 2.5:
Conditional probability and subjective probability / 2.5.1:
Conditional probability and cause and effect / 2.5.2:
Conditional probability and probability of joint events / 2.5.3:
Bayes' Theorem / 2.6:
A challenging problem / 2.6.1:
A more challenging problem: The three prisoners' problem / 2.6.2:
Random Variables, Average, Variance and Correlation / 2.7:
Some Specific Distributions / 2.8:
The binomial distribution / 2.8.1:
The normal distribution / 2.8.2:
The Poisson distribution / 2.8.3:
Generating Functions / 2.9:
The Law of Large Numbers / 2.10:
Elements of Information Theory / 3:
A Qualitative Introduction to Information Theory / 3.1:
Definition of Shannon's Information and Its Properties / 3.2:
Properties of the function H for the simplest case of two outcomes / 3.2.1:
Properties of H for the general case of n outcomes / 3.2.2:
The consistency property of the missing information (MI) / 3.2.3:
The case of an infinite number of outcomes / 3.2.4:
The Various Interpretations of the Quantity H / 3.3:
The Assignment of Probabilities by the Maximum Uncertainty Principle / 3.4:
The Missing Information and the Average Number of Binary Questions Needed to Acquire It / 3.5:
The False Positive Problem, Revisited / 3.6:
The Urn Problem, Revisited / 3.7:
Transition from the General MI to the Thermodynamic MI / 4:
MI in Binding Systems: One Kind of Information / 4.1:
One ligand on M sites / 4.1.1:
Two different ligands on M sites / 4.1.2:
Two identical ligands on M sites / 4.1.3:
Generalization to N ligands on M sites / 4.1.4:
Some Simple Processes in Binding Systems / 4.2:
The analog of the expansion process / 4.2.1:
A pure deassimilation process / 4.2.2:
Mixing process in a binding system / 4.2.3:
The dependence of MI on the characterization of the system / 4.2.4:
MI in an Ideal Gas System: Two Kinds of Information. The Sackur-Tetrode Equation / 4.3:
The locational MI / 4.3.1:
The momentum MI / 4.3.2:
Combining the locational and the momentum MI / 4.3.3:
Comments / 4.4:
The Structure of the Foundations of Statistical Thermodynamics / 5:
The Isolated System; The Micro-Canonical Ensemble / 5.1:
System in a Constant Temperature; The Canonical Ensemble / 5.2:
The Classical Analog of the Canonical Partition Function / 5.3:
The Re-interpretation of the Sackur-Tetrode Expression from Informational Considerations / 5.4:
Identifying the Parameter [beta] for an Ideal Gas / 5.5:
Systems at Constant Temperature and Chemical Potential; The Grand Canonical Ensemble / 5.6:
Systems at Constant Temperature and Pressure; The Isothermal Isobaric Ensemble / 5.7:
The Mutual Information due to Intermolecular Interactions / 5.8:
Some Simple Applications / 6:
Expansion of an Ideal Gas / 6.1:
Pure, Reversible Mixing; The First Illusion / 6.2:
Pure Assimilation Process; The Second Illusion / 6.3:
Fermi-Dirac (FD) statistics; Fermions / 6.3.1:
Bose-Einstein (BE) statistics; Bosons / 6.3.2:
Maxwell-Boltzmann (MB) statistics / 6.3.3:
Irreversible Process of Mixing Coupled with Expansion / 6.4:
Irreversible Process of Demixing Coupled with Expansion / 6.5:
Reversible Assimilation Coupled with Expansion / 6.6:
Reflections on the Processes of Mixing and Assimilation / 6.7:
A Pure Spontaneous Deassimilation Process / 6.8:
A Process Involving only Change in the Momentum Distribution / 6.9:
A Process Involving Change in the Intermolecular Interaction Energy / 6.10:
Some Baffling Experiments / 6.11:
The Second Law of Thermodynamics / 6.12:
Appendices
Newton's binomial theorem and some useful identities involving binomial coefficients / A:
The total number of states in the Fermi-Dirac and the Bose-Einstein statistics / B:
Pair and triplet independence between events / C:
Proof of the inequality [vertical bar]R(X, Y)[vertical bar] [less than or equal] 1 for the correlation coefficient / D:
The Stirling approximation / E:
Proof of the form of the function H / F:
The method of Lagrange undetermined multipliers / G:
Some inequalities for concave functions / H:
The MI for the continuous case / I:
Identical and indistinguishable (ID) particles / J:
The equivalence of the Boltzmann's and Jaynes' procedures to obtain the fundamental distribution of the canonical ensemble / K:
An alternative derivation of the Sackur-Tetrode equation / L:
Labeling and un-labeling of particles / M:
Replacing a sum by its maximal term / N:
The Gibbs paradox (GP) / O:
The solution to the three prisoners' problem / P:
References
Index
List of Abbreviations
Preface
Introduction / 1:
7.

図書

図書
アリー・ベン=ナイム著 ; 小野嘉之訳
出版情報: 東京 : 丸善出版, 2015.12  xix, 186p ; 21cm
所蔵情報: loading…
目次情報: 続きを見る
第1章 はじめに:熱機関から、無秩序、情報の広がり、自由、...、まで : 第二法則の巨視的定式化
エントロピーの巨視的定義 ほか
第2章 エントロピーはしばらく忘れて、情報ゲームで遊んでみよう : 20の質問(20‐Q)ゲームでウォーミングアップ
一様に分布した20の質問ゲームに対するシャノンの情報測度の定義 ほか
第3章 古典理想気体のエントロピーをシャノンの情報測度から導く : 理想気体における位置のSMI
粒子が区別できないことによる相互情報 ほか
第4章 いくつかの例とその解釈 : 理想気体の膨張
2つの理想気体の混合を含む過程 ほか
第5章 熱力学第二法則について : 何が自発過程を引き起こすか?
何がエントロピーを増加させるか? ほか
付録A
第1章 はじめに:熱機関から、無秩序、情報の広がり、自由、...、まで : 第二法則の巨視的定式化
エントロピーの巨視的定義 ほか
第2章 エントロピーはしばらく忘れて、情報ゲームで遊んでみよう : 20の質問(20‐Q)ゲームでウォーミングアップ
概要: 熱力学を理解するうえで、エントロピーほど悩ましい概念はないだろう。実体がとらえづらいがために、「無秩序」「広がり」「無知」などといったさまざまな定性的な解釈が与えられている。本書では、シャノンが提唱した情報測度の特殊な例としてエントロピーを 解釈するという立場から、歴史的経緯やさまざまな事例を挙げながら、エントロピーの正体に迫る。 続きを見る
8.

図書

図書
Arieh Ben-Naim
出版情報: Hackensack, N.J. : World Scientific, c2011  xxvii, 452 p. ; 24 cm
シリーズ名: Molecular theory of water and aqueous solutions / Arieh Ben-Naim ; pt. 2
所蔵情報: loading…
目次情報: 続きを見る
Quotations
List of Abbreviations
Preface
Acknowledgements
Introduction, the Main Problem and the Main Tools / 1:
The General Problem / l.l:
Forces and Driving Forces / 1.2:
Definition of the Solvation Process and the Corresponding Thermodynamic Quantities / 1.3:
The Conditional Solvation Process / 1.4:
Some Numerical Values of Solvation Thermodynamics / 1.5:
Solvation of hydrophilic molecules or groups / 1.5.1:
Solvation of hydrophobic molecules or groups / 1.5.2:
Hydrophobicity Scales / 1.6:
Some Numerical Values of the Pairwise Hydrophobic and Hydrophilic Interactions / 1.7:
Pairwise hydrophobic{H?0)interaction / 1.7.1:
Pairwise hydrophilic (H?I)interaction / 1.7.2:
Potential of average force for pairs of side chains of amino acids / 1.7.3:
Dissection of the Solvation Gibbs Energy of a Globular Protein / 1.8:
Dissection of the Solvation Gibbs Energy of a Denatured Protein / 1.9:
The Relationship between the Standard Gibbs Energy of a Reaction and Solvation Gibbs Energies / 1.10:
The Various Solvent-Induced Contributions to the Driving Force for Protein Folding / 1.11:
The solvation of the hard part / 1.11.1:
The solvation of the soft part / 1.11.2:
The contribution of the functional groups (FGs) exposed to the solvent / 1.11.3:
Concluding Remarks and Some Suggestions for the Future / 1.12:
Solvation and Solubility of Globular Proteins / 2:
Definition of Solubility and its Relationship to the Solvation Gibbs Energy / 2.1:
Solvation Gibbs Energy of a Model Globular Protein / 2.2:
Estimation of the Solvation Gibbs Energy of Real Proteins / 2.3:
The Relation between Solubility and Solvation Gibbs Energy for Moderately Soluble Proteins / 2.4:
A Possible Explanation for an Apparently Paradoxical Experimental Finding / 2.5:
The Effect of the Addition of a Solute on the Solvation Gibbs Energy / 2.6:
Concluding Remarks and Suggestions for Future Research / 2.7:
Protein Folding / 3:
The Chemical Equilibrium / 3.1:
Definition of the Folded and Unfolded Forms / 3.2:
Formal Dissection of the Solvent-Induced Effect on Protein Folding into "Small" Ingredients / 3.3:
Methods of Studying and Estimating the Various Contributions to $G / 3.4:
Summary of the Factors Involved in the Stability of the Native Protein / 3.5:
The Problem of the Preferential Protein Folding Pathways of Proteins / 3.6:
Energy Landscapes, Gibbs Energy Landscapes and Forces in Protein Folding / 3.7:
What Kind of Forces are Exerted on the Protein in the Process of Protein Folding? / 3.8:
The Forces in Action / 3.9:
Is there a "Folding Code"? / 3.10:
Association and Self-Assembly of Biomolecules / 3.11:
Thermodynamics and Statistical Thermodynamics of the Association Process / 4.1:
The Factors Involved in the Association of two Biomolecules / 4.2:
Association of two Hypothetical Globular Proteins / 4.3:
The "driving force" for dimerization / 4.3.1:
Virtual dimers, probabilistic considerations / 4.3.2:
Some numerical estimates of various contributions to the total PMF / 4.3.3:
H?0 or, H?I Interaction: Which is More Important in the Association Process? / 4.4:
Association of P and L in an ideal gas phase / 4.4.1:
Association in an organic liquid / 4.4.2:
Association in aqueous solutions / 4.4.3:
Enhancement of the H?O Mode by Strengthening the H?I Effects / 4.4.4:
Association by the Complete Absorption of a Small Solute into a Big Solute / 4.5:
Absorption without conformational changes in P / 4.5.1:
Absorption with conformational changes in P / 4.5.2:
Specificity of the Binding Mode; Molecular Recognition / 4.6:
The lock-and-key model for molecular recognition / 4.6.1:
Molecular recognition through the solvant / 4.6.2:
Self-Assembly of Macromolecules / 4.7:
Strong Solvent-Induced Forces between Macromolecules / 4.8:
Solvent-induced force by means of one-water bridges / 4.8.1:
Solvent-Induced Force by Means of Two-Water Bridges / 4.8.2:
Stronger forces between H?I surfaces / 4.8.3:
The General Statistical Mechanical Expression for the Chemical Potential and the Pseudo-Chemical Potential / 4.9:
The Pseudo-Chemical Potential and the Solvation Helmholtz Energy of a Molecule Having Internal Rotational Degrees of Freedom / Appendix B:
The Potential of Mean Force (PMF) and the Solvent-Induced Force / Appendix C:
Conditional Solvation and Conditional Correlation / Appendix D:
Non-Additivity of the Potential of Mean Force and of the Solvation Gibbs Energy / Appendix E:
The Statistical Mechanical Definition of Independence of Solvation and of Conditional Solvation / Appendix F:
Approximate Estimates of the H?I Interaction between Two, Three and Four H?I Groups at a Distance of 4.5 A / Appendix G:
Evaluating The Inadequacy of Kauzmann's Model for the Role of the H?O Effect in Protein Folding / Appendix H:
The Cracks in the Hydrogen Bond Inventory Argument / Appendix I:
Can "Statistical Potential," Derived from Protein Structures, be Interpreted as a Potential of Mean Force? / Appendix J:
Work of Creating a Cavity and the Probability of Finding a Cavity in a Solvent / Appendix K:
H?I Interactions and Solubility of Isomeric Compounds / Appendix L:
Further Inflating the Already Inflated Value of the H?0 Effect / Appendix M:
The Anfinsen Dogma and the "Thermodynamic Hypothesis" Applied to the Process of Protein Folding / Appendix N:
Entropy-Enthalpy Compensation; from an Exact Theorem to an Approximate Manifestation / Appendix O:
Probability of Finding a Specific Configuration of a Protein and the Work Required to Obtain that Configuration / Appendix P:
The Many Faces of Reversibility and Irreversibility / Appendix Q:
Cooperativity in Protein Folding? / Appendix R:
Local Densities of Water Molecules near H?I Groups / Appendix S:
What Drives the "Driving Force?" / Appendix T:
References
Index
Quotations
List of Abbreviations
Preface
9.

図書

図書
Arieh Ben-Naim
出版情報: Hackensack, N.J. : World Scientific, c2009  xxx, 629 p. ; ill. (some col.) ; 24 cm
シリーズ名: Molecular theory of water and aqueous solutions / Arieh Ben-Naim ; pt. 1
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
List of Abbreviations
Survey of the Properties of Water Personal Introduction / 1:
Introduction and Some Historical Notes / 1.1:
Properties of Water in the Gaseous Phase / 1.2:
The single water molecule / 1.2.1:
Interaction between two water molecules / 1.2.2:
Properties of Water in the Solid Phase / 1.3:
Ordinary ice / 1.3.1:
The residual entropy of ice / 1.3.2:
The phase diagram of water / 1.3.3:
Properties of Water in the Liquid Phase / 1.4:
Some outstanding properties of water / 1.4.1:
Molar volume of water and its temperature dependence / 1.4.2:
Heat capacity / 1.4.3:
Isothermal compressibility / 1.4.4:
The radial distribution function of water / 1.4.5:
The Kirkwood-Buff Integral / 1.5:
Ideal gas / 1.5.1:
Inert gases represented as Lennard-Jones particles / 1.5.2:
Water, methanol, and ethanol / 1.5.3:
Solvation of Water in Water / 1.6:
The Importance of Water in Biological Systems / 1.7:
Theoretical Approaches to the Study of Liquid Water Personal Introduction / 2:
Introduction / 2.1:
The General Theoretical Framework / 2.2:
The Mixture-Model Approach to Liquid Water / 2.3:
The origin of the mixture-model theory of water / 2.3.1:
Wada's two-structure model for water: The success and the limitation of the MM approach / 2.3.2:
An exact MM approach to the theory of liquids / 2.3.3:
Application of an exact two-structure model / 2.3.4:
Lattice Models for Water / 2.4:
The Pauling model and its solution / 2.4.1:
The heat capacity and the isothermal compressibility / 2.4.3:
A One-Dimensional Model for Water / 2.5:
The primitive model and the corresponding partition function / 2.5.1:
Selected illustrative results for the primitive model / 2.5.3:
The primitive cluster model for water and its partition function / 2.5.4:
Cluster's size distribution / 2.5.5:
Selected results for the primitive cluster model / 2.5.6:
Some concluding remarks regarding the 1-D model for water / 2.5.7:
A Two-Dimensional Model for Water / 2.6:
The physical model of water-like particles in two dimensions / 2.6.1:
The application of the Percus-Yevick equation to the BN2D model / 2.6.3:
Simulated results / 2.6.4:
Further development of the 2-D model / 2.6.5:
Three-Dimensional Models for Water / 2.7:
Introduction: A new era of waterresearch / 2.7.1:
Effective pair potential for water / 2.7.2:
Second virial coefficients of water / 2.7.3:
Definition of the structure of water / 2.7.4:
An approximate method of calculating the structure of water / 2.7.5:
Solvation of water in pure water / 2.7.6:
Distribution of species of water molecules / 2.7.7:
Application of the Percus-Yevick equation / 2.7.8:
Application of cluster expansion to water / 2.7.9:
Water with One Simple Solute Personal Introduction / 2.7.10:
Survey of Some Properties of Simple Aqueous Solutions / 3.1:
Solvation and Conditional Solvation / 3.3:
Definition of the solvation process / 3.3.1:
Hydrophobic and hydrophilic solutes / 3.3.2:
Why do we need solvation quantities? / 3.3.3:
Statistical Mechanical Expressions for the Solvation Thermodynamic Quantities / 3.4:
Application of the Mixture-Model Approach to Water / 3.5:
Application of a two-structure model (TSM) / 3.5.1:
Generalization to any mixture model of water / 3.5.2:
Application of an Interstitial Model for Water to Aqueous Solutions / 3.6:
The Problem of Stabilization of the Structure of Water / 3.7:
The concept of structural temperature / 3.7.1:
Formulation of the problem within the mixture-model approach / 3.7.2:
The application of the Kirkwood-Buff theory / 3.7.3:
An exact argument for a hard-point solute / 3.7.4:
An approximate measure of the structural change induced by the solute / 3.7.5:
An empirical estimate of the structural changes induced by the solute on the solvation entropy / 3.7.6:
Application of the Scaled Particle Theory / 3.8:
Application of a One-Dimensional Model / 3.9:
Solvation of hard rods in the primitive model for water / 3.9.1:
Application of the primitive cluster model for dilute solutions of inert solutes / 3.9.3:
Results for HR solute in dilute solutions of the primitive cluster model / 3.9.4:
Applications of Two-Dimensional Models / 3.10:
Applications of Three-Dimensional Models / 3.11:
Water with Two Solute Molecules; Hydrophobic Hydrophilic Phenomena Personal Introduction / 4:
The Experimental Evidence / 4.1:
Redefinition of the HøO Interaction / 4.3:
A Simple Measure of the Strength of the "Pure" HøO Interaction / 4.4:
Some experimental data on the strength of HøO interactions / 4.4.1:
HøO interaction among m identical spherical non-polar solute particles / 4.4.2:
Attaching a methyl group to various hydrocarbons / 4.4.3:
Attaching an ethyl group to various molecules / 4.4.4:
The hydrophobic interaction at zero separation / 4.4.5:
The hydrophobic interaction at contact distance between the two solutes / 4.4.6:
An improved approximate measure of the HøO interaction / 4.4.7:
Intramolecular HøO Interactions / 4.5:
A simple measure of the intermolecular HøO interaction / 4.5.1:
Mixed HøO-HøI interactions / 4.5.2:
Temperature and Pressure Dependence / 4.6:
Some experimental values of the entropy, enthalpy, and volume changes associated with the HøO interaction / 4.7.1:
Formal statistical mechanical expressions for ?G, ?S, ?H, and ?V for the HøO process / 4.7.2:
Hydrophobic interaction and structural changes in the solvent / 4.7.3:
A measure of the amount of structural changes in the solvent / 4.7.4:
Solvent Induced Interactions Between Two Hydrophilic Høl Groups / 4.8:
The Høl interaction at R1 ? 2.76 Ã… / 4.8.1:
The Høl interaction at R2 = 4.5 Ã… / 4.8.2:
Intramolecular HHøl interaction at R2 = 4.5 Ã… / 4.8.3:
Application of One-Dimensional Models to Study Hydrophobic Interactions / 4.9:
Application of Two-Dimensional Models / 4.10:
Application of Three-Dimensional Models / 4.11:
Hydrophobic or Hydrophilic? That is the Question! / 4.12:
A short history of the rise and fall of hydrophobia and hydrophilia / 4.12.1:
The decline of the hydrophilic effect / 4.12.2:
The rise of the H?O effect / 4.12.3:
The resurgence of the H?l effects / 4.12.4:
Appendices
The Tetrahedral Geometry / Appendix A:
Calculation of the Residual Entropy of Water / Appendix B:
The Kirkwood-Buff Integrals for an Ideal Gas / Appendix C:
The Equivalence Between the One-Component and the Mixture-Model Views of the Same System / Appendix D:
The Generalized Euler Theorem / Appendix E:
Some Identities in the Mixture-Model Approach / Appendix F:
The Statistical Mechanical Expression for the Solvation Gibbs Energy of Hard Spheres and the Work of Cavity Formation / Appendix G:
The Solubility of a Simple Solute in Water and Structural Changes Induced in the Solvent / Appendix H:
An Estimate of the Strength of Hydrophilic Interaction at R = 4.5 Ã… / Appendix I:
Calculated Data on H?l Interactions / Appendix j:
Experimental Evidence for the Entropy-Enthalpy Compensation / Appendix K:
Solutions to Selected Exercises / Appendix L:
References
Index
Preface
Acknowledgments
List of Abbreviations
10.

図書

東工大
目次DB

図書
東工大
目次DB
アリー・ベン-ナイム著 ; 中嶋一雄訳
出版情報: 東京 : 講談社, 2010.7  242p ; 18cm
シリーズ名: ブルーバックス ; B-1690
所蔵情報: loading…
目次情報: 続きを見る
訳者まえがき 7
プロローグ 15
第1章 熱力学第二法則の歴史 24
   1.1 非原子的な熱力学第二法則 24
   1.2 原子論を踏まえた第二法則 34
第2章 最初にサイコロで遊ぼう 45
   2.1 1個のサイコロ 45
   2.2 2個のサイコロ 46
   2.3 3個のサイコロ 52
   2.4 4個のサイコロと、さらに多くのサイコロ 55
第3章 単純化したサイコロゲームで、理解の第一歩 63
   3.1 2個のサイコロ : Nが2 66
   3.2 4個のサイコロ : Nが4 71
   3.3 10個のサイコロ : Nが10 74
   3.4 100個のサイコロ : Nが100 82
   3.5 1000個のサイコロ : Nが1000 84
   3.6 10000個のサイコロ : Nが10^4と、それ以上 87
第4章 五感を用いた第二法則の体験 94
   4.1 視覚で見る 95
   4.2 嗅覚で匂いを嗅ぐ 98
   4.3 味覚で味わう 101
   4.4 聴覚で聞く 103
   4.5 触覚で感じる 104
第5章 いよいよ、あなたの常識で理解しよう 108
第6章 サイコロの世界から現実の世界へ 128
   6.1 展開プロセスとの対決 130
   6.2 非同化プロセスへの対応 139
   6.3 平衡状態に向かう系の展開のまとめ 147
   6.4 3つの成分の混合 157
   6.5 熱い気体から冷たい気体への熱移動 159
   6.6 あなたが第二法則を理解していることをテストする 167
第7章 物理法則としての第二法則の位置付けについて 174
   7.1 神秘の源泉は何か 177
   7.2 エントロピーと「無秩序」との関係 186
   7.3 エントロピーと正体不明(未知)の情報との関係 191
   7.4 第二法則は時間の矢と親密に関係しているのか 201
   7.5 熱力学第二法則は物理学の法則か 208
   7.6 我々は第二法則を取り除くことができるか 211
付録 茶さじ1杯の情報理論 214
原注 235
本書にあるゲームを模擬実験するためのプログラム 239
さくいん 242
訳者まえがき 7
プロローグ 15
第1章 熱力学第二法則の歴史 24
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼