Preface |
Acknowledgements |
Preliminaries / 1.: |
The setting / 1.1.: |
Topology / 1.2.: |
Measures / 1.3.: |
Covering theorems / 1.4.: |
Densities / 1.5.: |
Lipschitz maps / 1.6.: |
BV functions / 1.7.: |
BV sets / 1.8.: |
Slices of BV sets / 1.9.: |
Approximating BV sets / 1.10.: |
Charges / 2.: |
The definition and examples / 2.1.: |
Spaces of charges / 2.2.: |
Derivates / 2.3.: |
Derivability / 2.4.: |
Reduced charges / 2.5.: |
Partitions / 2.6: |
Variations of charges / 3.: |
Some classical concepts / 3.1.: |
The essential variation / 3.2.: |
The integration problem / 3.3.: |
An excursion to Hausdorff measures / 3.4.: |
The critical variation / 3.5.: |
AC[subscript *] charges / 3.6.: |
Essentially clopen sets / 3.7.: |
Charges and BV functions / 4.: |
The charge F x L[superscript 1] / 4.1.: |
The space (CH[subscript *](E),S) / 4.2.: |
Duality / 4.3.: |
More on BV functions / 4.4.: |
The charge F [angle] g / 4.5.: |
Lipeomorphisms / 4.6.: |
Integration / 5.: |
The R-integral / 5.1.: |
Multipliers / 5.2.: |
Change of variables / 5.3.: |
Averaging / 5.4.: |
The Riemann approach / 5.5.: |
Charges as distributional derivatives / 5.6.: |
The Lebesgue integral / 5.7.: |
Extending the integral / 6.: |
Buczolich's example / 6.1.: |
I-convergence / 6.2.: |
The GR-integral / 6.3.: |
Additional properties / 6.4.: |
Bibliography |
List of symbols |
Index |