close
1.

図書

図書
edited by Charles W. Tobias
出版情報: New York : Interscience, 1962  v. ; 23 cm
シリーズ名: Advances in electrochemistry and electrochemical engineering ; 2, 5, 8
所蔵情報: loading…
2.

図書

図書
Delahay, Paul ; Tobias, Charles W. ; Gerischer, Heinz
出版情報: New York : Wiley , New York : Interscience, 1961-1984  v. ; 23 cm.
所蔵情報: loading…
3.

図書

図書
edited by Heinz Gerischer and Charles W. Tobias ; contributions from V. Brusic ... [et al.]
出版情報: Weinheim ; New York : VCH, c1990-  v. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Marcus Theory in the Qualitative and Quantitative Description of Electrochemiluminescence Phenomena / A. Kapturkiewicz
Electrochemistry of Oxide High-Temperature Superconductors / O. Petrii ; G. Tsirlina
Flow Rate Dependence of Localized Corrosion in Thermal Power Plant Materials / D. Macdonald ; L. Kriksunov
Polymer Electrolyte Fuel Cells / S. Gottesfeld
Graphite, Carbonaceous Materials and Organic Solids as Active Electrodes in Metal-Free Batteries / F. Beck
Index
Series Preface
Volume Preface
List of Contributors
In-situ X-ray Diffraction Studies of the Electrode/Solution Interface / Christopher A. Lucas ; Nenad M. Markovic1:
Introduction / 1.1:
Experimental / 1.2:
Adsorbate-induced Restructuring of Metal Substrates / 1.3:
Surface Relaxation / 1.3.1:
Pt Monometallic and Bimetallic Surfaces / 1.3.1.1:
Group IB Metals / 1.3.1.2:
Surface Reconstruction / 1.3.2:
Adlayer Structures / 1.4:
Anion Structures / 1.4.1:
CO Ordering on the Pt(111) Surface / 1.4.2:
Underpotential Deposition (UPD) / 1.4.3:
Reactive Metals and Oxides / 1.5:
Conclusions and Future Directions / 1.6:
Acknowledgments
References
UV-visible Reflectance Spectroscopy of Thin Organic Films at Electrode Surfaces / Takamasa Sagara2:
The Basis of UV-visible Reflection Measurement at an Electrode Surface / 2.1:
Absolute Reflection Spectrum versus Modulated Reflection Spectrum / 2.3:
Wavelength-modulated UV-visible Reflectance Spectroscopy / 2.4:
Potential-modulated UV-visible Reflectance Spectroscopy / 2.5:
Instrumentation of the Potential-modulated UV-visible Reflection Measurement / 2.6:
ER Measurements for Redox-active Thin Organic Films / 2.7:
Interpretation of the Reflection Spectrum / 2.8:
Reflection Measurement at Special Electrode Configurations / 2.9:
Estimation of the Molecular Orientation on the Electrode Surface / 2.10:
Estimation of the Molecular Orientation on the Electrode Surface using the Redox ER Signal / 2.10.1:
Estimation of the Molecular Orientation on the Electrode Surface using the Stark Effect ER Signal / 2.10.2:
Measurement of Electron Transfer Rate using ER Measurement / 2.11:
Redox ER Signal in Frequency Domain / 2.11.1:
Examples of Electron Transfer Rate Measurement using ER Signal / 2.11.2:
Improvement in Data Analysis / 2.11.3:
Combined Analysis of Impedance and Modulation Spectroscopic Signals / 2.11.4:
Upper Limit of Measurable Rate Constant / 2.11.5:
Rate Constant Measurement using an ER Voltammogram / 2.11.6:
ER Signal Originated from Non-Faradaic Processes - a Quick Overview / 2.12:
ER Signal with Harmonics Higher than the Fundamental Modulation Frequency / 2.13:
Distinguishing between Two Simultaneously Occurring Electrode Processes / 2.14:
Some Recent Examples of the Application of ER Measurement for a Functional Electrode / 2.15:
Scope for Future Development of UV-visible Reflection Measurements / 2.16:
New Techniques in UV-visible Reflection Measurements / 2.16.1:
Remarks on the Scope for Future Development of UV-visible Reflection Measurements / 2.16.2:
Epi-fluorescence Microscopy Studies of Potential Controlled Changes in Adsorbed Thin Organic Films at Electrode Surfaces / Dan Bizzotto ; Jeff L. Shepherd3:
Fluorescence Microscopy and Fluorescence Probes / 3.1:
Fluorescence near Metal Surfaces / 3.3:
Description of a Fluorescence Microscope for Electrochemical Studies / 3.4:
Microscope Resolution / 3.4.1:
Image Analysis / 3.4.2:
Electrochemical Systems Studied with Fluorescence Microscopy / 3.5:
Adsorption of C[subscript 18]OH on Au(111) / 3.5.1:
The Adsorption and Dimerization of 2-(2[prime]-Thienyl)pyridine (TP) on Au(111) / 3.5.2:
Fluorescence Microscopy of the Adsorption of DOPG onto an Hg Drop / 3.5.3:
Fluorescence Microscopy of Liposome Fusion onto a DOPC-coated Hg Interface / 3.5.4:
Fluorescence Imaging of the Reductive Desorption of an Alkylthiol SAM on Au / 3.5.5:
Conclusions and Future Considerations / 3.6:
Structures and Abbreviations
Linear and Non-linear Spectroscopy at the Electrified Liquid/Liquid Interface / David J. Fermin4:
Introductory Remarks and Scope of the Chapter / 4.1:
Linear Spectroscopy / 4.2:
Total Internal Reflection Absorption/Fluorescence Spectroscopy / 4.2.1:
Potential-modulated Reflectance/Fluorescence in TIR / 4.2.2:
Quasi-elastic Laser Scattering (QELS) / 4.2.3:
Other Linear Spectroscopic Studies at the Neat Liquid/Liquid Interface / 4.2.4:
Non-linear Spectroscopy / 4.3:
Second Harmonic Generation / 4.3.1:
Vibrational Sum Frequency Generation / 4.3.2:
Summary and Outlook / 4.4:
Symbols
Abbreviations
Sum Frequency Generation Studies of the Electrified Solid/Liquid Interface / Steven Baldelli ; Andrew A. Gewirth5:
Theoretical Background / 5.1:
SFG Intensities / 5.1.2:
Resonant Term / 5.1.3:
Non-resonant Term / 5.1.4:
Phase Interference / 5.1.5:
Orientation Information in SFG / 5.1.6:
Phase Matching / 5.1.7:
Surface Optics / 5.1.8:
Data Analysis Reference / 5.1.9:
Experimental Designs / 5.1.10:
Spectroscopy Cell / 5.1.11:
Applications of SFG to Electrochemistry / 5.2:
CO Adsorption / 5.2.1:
Polarization Studies / 5.2.1.1:
Potential Dependence / 5.2.1.2:
CO on Alloys / 5.2.1.3:
Solvent Effects / 5.2.1.4:
Adsorption of upd and opd H / 5.2.2:
CN on Pt and Au Electrodes / 5.2.3:
CN/Pt / 5.2.3.1:
CN/Au / 5.2.3.2:
OCN and SCN / 5.2.4:
Pyridine and Related Derivatives / 5.2.5:
Dynamics of CO and CN Vibrational Relaxation / 5.2.6:
Solvent Structure / 5.2.7:
Nonaqueous Solvents / 5.2.7.1:
Aqueous Solvents / 5.2.7.2:
Monolayers and Corrosion / 5.2.8:
Conclusion / 5.3:
IR Spectroscopy of the Semiconductor/Solution Interface / Jean-Noel Chazalviel ; Francois Ozanam6:
IR Spectroscopy at an Interface / 6.1:
Basic Principles of IR Spectroscopy / 6.2.1:
External versus Internal Reflection / 6.2.2:
Practical Aspects at an Electrochemical Interface / 6.3:
How Potential can Affect IR Absorption / 6.3.1:
How to Isolate Potential-sensitive IR Absorption / 6.3.2:
What can be Learnt from IR Spectroscopy at the Interface / 6.4:
Vibrational Absorption of Interfacial and Double-Layer Species / 6.4.1:
Vibrational Absorption of Species outside the Double-Layer / 6.4.2:
Electronic Absorption / 6.4.3:
Effect of Light Polarization in ATR Geometry / 6.5:
Selection Rules for a Polarized IR Beam / 6.5.1:
Case of Strongly Polar Species: LO-TO Splitting / 6.5.2:
Polarization Modulation / 6.5.3:
Dynamic Information from a Modulation Technique / 6.6:
Case of Rough or Complex Interfaces / 6.7:
Surface Roughness / 6.7.1:
Composite Interface Films / 6.7.2:
Recent Advances in in-situ Infrared Spectroscopy and Applications in Single-crystal Electrochemistry and Electrocatalysis / Carol Korzeniewski6.8:
Spectrometer Systems / 7.1:
Spectrometer Throughput Considerations / 7.2.2:
Detectors / 7.2.3:
Signal-to-Noise Ratio Considerations / 7.2.4:
Signal Digitization / 7.2.5:
Signal Modulation and Related Data Acquisition Methods / 7.2.6:
Applications / 7.3:
Adsorption and Reactivity at Well-defined Electrode Surfaces / 7.3.1:
Adsorption on Pure Metals / 7.3.1.1:
Electrochemistry at Well-defined Bimetallic Electrodes / 7.3.1.2:
SEIRAS / 7.3.2:
Infrared Spectroscopy as a Probe of Surface Electrochemistry at Metal Catalyst Particles / 7.3.3:
A Nanostructured Electrodes and Optical Considerations / 7.3.4:
Emerging Instrumental Methods and Quantitative Approaches / 7.3.5:
Step-scan Interferometry / 7.3.5.1:
Two-dimensional Infrared Correlation Analysis / 7.3.5.2:
Quantitation of Molecular Orientation / 7.3.5.3:
Summary / 7.4:
In-situ Surface-enhanced Infrared Spectroscopy of the Electrode/Solution Interface / Masatoshi Osawa8:
Electromagnetic Mechanism of SEIRA / 8.1:
Experimental Procedures / 8.3:
Electrochemical Cell and Optics / 8.3.1:
Preparation of Thin-film Electrodes / 8.3.2:
General Features of SEIRAS / 8.4:
Comparison of SEIRAS with IRAS / 8.4.1:
Surface Selection Rule and Molecular Orientation / 8.4.2:
Comparison of SEIRA and SERS / 8.4.3:
Baseline Shift by Adsorption of Molecules and Ions / 8.4.4:
Selected Examples / 8.5:
Reactions of a Triruthenium Complex Self-assembled on Au / 8.5.1:
Cytochrome c Electrochemistry on Self-assembled Monolayers / 8.5.2:
Molecular Recognition at the Electrochemical Interface / 8.5.3:
Hydrogen Adsorption and Evolution on Pt / 8.5.4:
Oxidation of C1 Molecules on Pt / 8.5.5:
Advanced Techniques for Studying Electrode Dynamics / 8.6:
Rapid-scan Millisecond Time-resolved FT-IR Measurements / 8.6.1:
Step-scan Microsecond Time-resolved FT-IR Measurements / 8.6.2:
Potential-modulated FT-IR Spectroscopy / 8.6.3:
Summary and Future Prospects / 8.7:
Acknowledgements
Quantitative SNIFTIRS and PM IRRAS of Organic Molecules at Electrode Surfaces / Vlad Zamlynny ; Jacek Lipkowski9:
Reflection of Light from Stratified Media / 9.1:
Reflection and Refraction of Electromagnetic Radiation at a Two-phase Boundary / 9.2.1:
Reflection and Refraction of Electromagnetic Radiation at a Multiple-phase Boundary / 9.2.2:
Optimization of Experimental Conditions / 9.3:
Optimization of the Angle of Incidence and the Thin-cavity Thickness / 9.3.1:
The Effect of Incident Beam Collimation / 9.3.2:
The Choice of the Optical Window Geometry and Material / 9.3.3:
Determination of the Angle of Incidence and the Thin-cavity Thickness / 9.4:
Determination of the Isotropic Optical Constants in Aqueous Solutions / 9.5:
Determination of the Orientation of Organic Molecules at the Electrode Surface / 9.6:
Development of Quantitative SNIFTIRS / 9.7:
Description of the Experimental Set-up / 9.7.1:
Fundamentals of SNIFTIRS / 9.7.2:
Calculation of the Tilt Angle from SNIFTIRS Spectra / 9.7.3:
Applications of Quantitative SNIFTIRS / 9.7.4:
Development of Quantitative in-situ PM IRRAS / 9.8:
Fundamentals of PM IRRAS and Experimental Set-up / 9.8.1:
Principles of Operation of a Photoelastic Modulator / 9.8.3:
Correction of PM IRRAS Spectra for the PEM Response Functions / 9.8.4:
Background Subtraction / 9.8.5:
Applications of Quantitative PM IRRAS / 9.8.6:
Summary and Future Directions / 9.9:
Tip-enhanced Raman Spectroscopy - Recent Developments and Future Prospects / Bruno Pettinger10:
General Introduction / 10.1:
SERS at Well-defined Surfaces / 10.2:
Single-molecule Raman Spectroscopy / 10.3:
Tip-enhanced Raman Spectroscopy (TERS) / 10.4:
Near-field Raman Spectroscopy with or without Apertures / 10.4.1:
First TERS Experiments / 10.4.2:
TERS on Single-crystalline Surfaces / 10.4.3:
Outlook / 10.5:
Recent Results / 10.5.1:
New Approaches on the Horizon / 10.5.2:
Acknowledgment
Subject Index
Microelectrodes in Solid State Ionics (J
Fleig)
Nonlinear Dynamics in Electrochemical Systems (K
Krischer)
The Electrochemistry of Diamond (Y
Pleskov)
Passivity of Metals (H
Strehblow)
Marcus Theory in the Qualitative and Quantitative Description of Electrochemiluminescence Phenomena / A. Kapturkiewicz
Electrochemistry of Oxide High-Temperature Superconductors / O. Petrii ; G. Tsirlina
Flow Rate Dependence of Localized Corrosion in Thermal Power Plant Materials / D. Macdonald ; L. Kriksunov
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼