close
1.

図書

図書
Tomas Björk
出版情報: Oxford : Oxford University Press, 2009  xx, 525 p. ; 24 cm
2.

図書

図書
T. ビョルク著 ; 前川功一訳
出版情報: 東京 : 朝倉書店, 2006.1  xiii, 289p ; 22cm
シリーズ名: ファイナンス・ライブラリー ; 9
3.

図書

図書
Tomas Björk
出版情報: Oxford : Oxford University Press, 2004  xviii, 466 p. ; 24 cm
目次情報: 続きを見る
Introduction / 1:
Problem Formulation / 1.1:
The Binomial Model / 2:
The One Period Model / 2.1:
Model Description / 2.1.1:
Portfolios and Arbitrage / 2.1.2:
Contingent Claims / 2.1.3:
Risk Neutral Valuation / 2.1.4:
The Multiperiod Model / 2.2:
Exercises / 2.2.1:
Notes / 2.4:
A More General One Period Model / 3:
The Model / 3.1:
Absence of Arbitrage / 3.2:
Martingale Pricing / 3.3:
Completeness / 3.4:
Stochastic Discount Factors / 3.5:
Stochastic Integrals / 3.6:
Information / 4.1:
Martingales / 4.3:
Stochastic Calculus and the Ito Formula / 4.5:
Examples / 4.6:
The Multidimensional Ito Formula / 4.7:
Correlated Wiener Processes / 4.8:
Differential Equations / 4.9:
Stochastic Differential Equations / 5.1:
Geometric Brownian Motion / 5.2:
The Linear SDE / 5.3:
The Infinitesimal Operator / 5.4:
Partial Differential Equations / 5.5:
The Kolmogorov Equations / 5.6:
Portfolio Dynamics / 5.7:
Self-financing Portfolios / 6.1:
Dividends / 6.3:
Exercise / 6.4:
Arbitrage Pricing / 7:
Contingent Claims and Arbitrage / 7.1:
The Black-Scholes Equation / 7.3:
The Black-Scholes Formula / 7.4:
Options on Futures / 7.6:
Forward Contracts / 7.6.1:
Futures Contracts and the Black Formula / 7.6.2:
Volatility / 7.7:
Historic Volatility / 7.7.1:
Implied Volatility / 7.7.2:
American options / 7.8:
Completeness and Hedging / 7.9:
Completeness in the Black-Scholes Model / 8.1:
Completeness-Absence of Arbitrage / 8.3:
Parity Relations and Delta Hedging / 8.4:
Parity Relations / 9.1:
The Greeks / 9.2:
Delta and Gamma Hedging / 9.3:
The Martingale Approach to Arbitrage Theory / 9.4:
The Case with Zero Interest Rate / 10.1:
A Rough Sketch of the Proof / 10.2:
Precise Results / 10.2.2:
The General Case / 10.3:
Summary for the Working Economist / 10.4:
The Mathematics of the Martingale Approach / 10.8:
Stochastic Integral Representations / 11.1:
The Girsanov Theorem: Heuristics / 11.2:
The Girsanov Theorem / 11.3:
The Converse of the Girsanov Theorem / 11.4:
Girsanov Transformations and Stochastic Differentials / 11.5:
Maximum Likelihood Estimation / 11.6:
Black-Scholes from a Martingale Point of View / 11.7:
Pricing / 12.1:
Multidimensional Models: Classical Approach / 12.3:
Reducing the State Space / 13.1:
Hedging / 13.5:
Multidimensional Models: Martingale Approach / 13.6:
Markovian Models and PDEs / 14.1:
Market Prices of Risk / 14.6:
The Hansen-Jagannathan Bounds / 14.7:
Incomplete Markets / 14.9:
A Scalar Nonpriced Underlying Asset / 15.1:
The Multidimensional Case / 15.3:
A Stochastic Short Rate / 15.4:
The Martingale Approach / 15.5:
Summing Up / 15.6:
Discrete Dividends / 15.7:
Price Dynamics and Dividend Structure / 16.1.1:
Pricing Contingent Claims / 16.1.2:
Continuous Dividends / 16.2:
Continuous Dividend Yield / 16.2.1:
Currency Derivatives / 16.2.2:
Pure Currency Contracts / 17.1:
Domestic and Foreign Equity Markets / 17.2:
Domestic and Foreign Market Prices of Risk / 17.3:
Barrier Options / 17.4:
Mathematical Background / 18.1:
Out Contracts / 18.2:
Down-and-Out Contracts / 18.2.1:
Up-and-Out Contracts / 18.2.2:
In Contracts / 18.2.3:
Ladders / 18.4:
Lookbacks / 18.5:
Stochastic Optimal Control / 18.6:
An Example / 19.1:
The Formal Problem / 19.2:
The Hamilton-Jacobi-Bellman Equation / 19.3:
Handling the HJB Equation / 19.4:
The Linear Regulator / 19.5:
Optimal Consumption and Investment / 19.6:
A Generalization / 19.6.1:
Optimal Consumption / 19.6.2:
The Mutual Fund Theorems / 19.7:
The Case with No Risk Free Asset / 19.7.1:
The Case with a Risk Free Asset / 19.7.2:
Bonds and Interest Rates / 19.8:
Zero Coupon Bonds / 20.1:
Interest Rates / 20.2:
Definitions / 20.2.1:
Relations between df(t,T), dp(t,T), and dr(t) / 20.2.2:
An Alternative View of the Money Account / 20.2.3:
Coupon Bonds, Swaps, and Yields / 20.3:
Fixed Coupon Bonds / 20.3.1:
Floating Rate Bonds / 20.3.2:
Interest Rate Swaps / 20.3.3:
Yield and Duration / 20.3.4:
Short Rate Models / 20.4:
Generalities / 21.1:
The Term Structure Equation / 21.2:
Martingale Models for the Short Rate / 21.3:
Q-dynamics / 22.1:
Inversion of the Yield Curve / 22.2:
Affine Term Structures / 22.3:
Definition and Existence / 22.3.1:
A Probabilistic Discussion / 22.3.2:
Some Standard Models / 22.4:
The Vasicek Model / 22.4.1:
The Ho-Lee Model / 22.4.2:
The CIR Model / 22.4.3:
The Hull-White Model / 22.4.4:
Forward Rate Models / 22.5:
The Heath-Jarrow-Morton Framework / 23.1:
Martingale Modeling / 23.2:
The Musiela Parameterization / 23.3:
Change of Numeraire / 23.4:
Changing the Numeraire / 24.1:
Forward Measures / 24.4:
Using the T-bond as Numeraire / 24.4.1:
An Expectation Hypothesis / 24.4.2:
A General Option Pricing Formula / 24.5:
The General Gaussian Model / 24.6:
Caps and Floors / 24.8:
LIBOR and Swap Market Models / 24.9:
Caps: Definition and Market Practice / 25.1:
The LIBOR Market Model / 25.2:
Pricing Caps in the LIBOR Model / 25.3:
Terminal Measure Dynamics and Existence / 25.4:
Calibration and Simulation / 25.5:
The Discrete Savings Account / 25.6:
Swaps / 25.7:
Swaptions: Definition and Market Practice / 25.8:
The Swap Market Models / 25.9:
Pricing Swaptions in the Swap Market Model / 25.10:
Drift Conditions for the Regular Swap Market Model / 25.11:
Concluding Comment / 25.12:
Forwards and Futures / 25.13:
Futures Contracts / 26.1:
Measure and Integration / 26.3:
Sets and Mappings / A.1:
Measures and Sigma Algebras / A.2:
Integration / A.3:
Sigma-Algebras and Partitions / A.4:
Sets of Measure Zero / A.5:
The L[superscript p] Spaces / A.6:
Hilbert Spaces / A.7:
Sigma-Algebras and Generators / A.8:
Product measures / A.9:
The Lebesgue Integral / A.10:
The Radon-Nikodym Theorem / A.11:
Probability Theory / A.12:
Random Variables and Processes / B.1:
Partitions and Information / B.2:
Sigma-algebras and Information / B.3:
Independence / B.4:
Conditional Expectations / B.5:
Equivalent Probability Measures / B.6:
Martingales and Stopping Times / B.7:
Discrete Stochastic Integrals / C.1:
Likelihood Processes / C.3:
Stopping Times / C.4:
References / C.5:
Index
Introduction / 1:
Problem Formulation / 1.1:
The Binomial Model / 2:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼